Numerical investigation of freak wave slamming on a fixed deck structure

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-11-28 DOI:10.1016/j.coastaleng.2024.104671
Xin Wang , Min Luo , Harshinie Karunarathna , Jose Horrillo-Caraballo , Dominic E. Reeve
{"title":"Numerical investigation of freak wave slamming on a fixed deck structure","authors":"Xin Wang ,&nbsp;Min Luo ,&nbsp;Harshinie Karunarathna ,&nbsp;Jose Horrillo-Caraballo ,&nbsp;Dominic E. Reeve","doi":"10.1016/j.coastaleng.2024.104671","DOIUrl":null,"url":null,"abstract":"<div><div>Wave impact loads on box-shaped structures highly depend on the wave morphology. This paper conducts a numerical study of freak wave impacts on a fixed, box-shaped deck. A numerical wave flume characterized by enhanced momentum conservation is developed, showing satisfactory accuracy and stability in reproducing freak wave impacts. By changing the horizontal locations of the deck, comparative analyses of the kinematics and dynamics on the front, top and bottom walls of the deck are performed. Based on the morphological features of the wavefront and overturning wave tongue, a quantitative approach for classifying the impact types is proposed. Four impact types are identified, including the unaerated impact of a non-breaking wave, the well-developed plunging breaker impacts with air entrapment on the top or front wall, and the broken wave impact. By investigating the characteristics of each impact type, it is found that the wave shapes and impact behaviours vary significantly on the front and top walls but show high similarities on the bottom wall. The well-developed plunging breaker applies the largest wave pressures and forces, especially when air entrapment happens. Significant negative pressures appear on the top and bottom walls, and the sharp right angles on the edges of the front wall play an important role in the generation of such negative pressures. The influences of entrapped air pockets on wave loads highly depend on their locations. In particular, the entrapped air results in large pressures and insignificant air cushioning effects on the front wall. The findings of the present study would advance the knowledge of the breaking wave impact on box-shaped deck structures, especially the behaviours of the air entrapment and the influence on impact loads, which could underpin the design and assessment of coastal and ocean structures with deck platforms.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"197 ","pages":"Article 104671"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924002199","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Wave impact loads on box-shaped structures highly depend on the wave morphology. This paper conducts a numerical study of freak wave impacts on a fixed, box-shaped deck. A numerical wave flume characterized by enhanced momentum conservation is developed, showing satisfactory accuracy and stability in reproducing freak wave impacts. By changing the horizontal locations of the deck, comparative analyses of the kinematics and dynamics on the front, top and bottom walls of the deck are performed. Based on the morphological features of the wavefront and overturning wave tongue, a quantitative approach for classifying the impact types is proposed. Four impact types are identified, including the unaerated impact of a non-breaking wave, the well-developed plunging breaker impacts with air entrapment on the top or front wall, and the broken wave impact. By investigating the characteristics of each impact type, it is found that the wave shapes and impact behaviours vary significantly on the front and top walls but show high similarities on the bottom wall. The well-developed plunging breaker applies the largest wave pressures and forces, especially when air entrapment happens. Significant negative pressures appear on the top and bottom walls, and the sharp right angles on the edges of the front wall play an important role in the generation of such negative pressures. The influences of entrapped air pockets on wave loads highly depend on their locations. In particular, the entrapped air results in large pressures and insignificant air cushioning effects on the front wall. The findings of the present study would advance the knowledge of the breaking wave impact on box-shaped deck structures, especially the behaviours of the air entrapment and the influence on impact loads, which could underpin the design and assessment of coastal and ocean structures with deck platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
Editorial Board Corrigendum to “Remotely sensed short-crested breaking waves in a laboratory directional wave basin” [Coastal Eng. (183), April 2023, 104327] Minutely monitoring of swash zone processes using a lidar-camera fusion system Assessing shorelines extracted from satellite imagery using coincident terrestrial lidar linescans HF radar estimation of ocean wave parameters: Second-order Doppler spectrum versus Bragg wave modulation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1