Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2025-01-17 DOI:10.1016/j.coastaleng.2025.104697
Davina L. Passeri , Rangley C. Mickey , David M. Thompson , Michael Itzkin , Elizabeth Godsey , Matthew V. Bilskie , Alexander Seymour , Autumn Poisson , Jin Ikeda , Scott C. Hagen
{"title":"Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system","authors":"Davina L. Passeri ,&nbsp;Rangley C. Mickey ,&nbsp;David M. Thompson ,&nbsp;Michael Itzkin ,&nbsp;Elizabeth Godsey ,&nbsp;Matthew V. Bilskie ,&nbsp;Alexander Seymour ,&nbsp;Autumn Poisson ,&nbsp;Jin Ikeda ,&nbsp;Scott C. Hagen","doi":"10.1016/j.coastaleng.2025.104697","DOIUrl":null,"url":null,"abstract":"<div><div>This study assesses the impacts of five proposed restoration actions at Little Dauphin Island, a low-lying relic spit in a semi-enclosed bay system on the Alabama coast. A Delft3D model is developed to simulate annual scale (five-year) sediment transport and resulting bed level changes. The model is validated with observed water level and wave data, as well as sediment tracers that were deployed offshore of the island. An XBeach model is developed to simulate storm-driven morphologic change and is validated for hurricanes Ivan (2004), Katrina (2005)and Sally (2020). Together, the models are used to assess differences in the island's morphological response under a no-action (status quo) scenario representing a continuous island, tidal inlet realignment, a sand motor nourishment, beach and dune restoration and a dredged offshore borrow area. The no-action scenario revealed that the island breached at multiple locations including the location of the proposed inlet realignment during each storm. The realigned channel did not prevent breaching on the island, but reduced the magnitude of sand transported through the breaches. The sand motor provided some sheltering to leeward shorelines during storms but did not prevent breaching from occurring elsewhere. Fairweather waves and currents were not strong enough to transport sand outside of the vicinity of the feature to feed adjacent shorelines as intended. The beach and dune restoration reduced storm-driven overtopping along the nourished shoreline. For habitat purposes, strategically placed bayous provided low elevation points that allowed overwash depending on the direction of cross-barrier water level gradients.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"197 ","pages":"Article 104697"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838392500002X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study assesses the impacts of five proposed restoration actions at Little Dauphin Island, a low-lying relic spit in a semi-enclosed bay system on the Alabama coast. A Delft3D model is developed to simulate annual scale (five-year) sediment transport and resulting bed level changes. The model is validated with observed water level and wave data, as well as sediment tracers that were deployed offshore of the island. An XBeach model is developed to simulate storm-driven morphologic change and is validated for hurricanes Ivan (2004), Katrina (2005)and Sally (2020). Together, the models are used to assess differences in the island's morphological response under a no-action (status quo) scenario representing a continuous island, tidal inlet realignment, a sand motor nourishment, beach and dune restoration and a dredged offshore borrow area. The no-action scenario revealed that the island breached at multiple locations including the location of the proposed inlet realignment during each storm. The realigned channel did not prevent breaching on the island, but reduced the magnitude of sand transported through the breaches. The sand motor provided some sheltering to leeward shorelines during storms but did not prevent breaching from occurring elsewhere. Fairweather waves and currents were not strong enough to transport sand outside of the vicinity of the feature to feed adjacent shorelines as intended. The beach and dune restoration reduced storm-driven overtopping along the nourished shoreline. For habitat purposes, strategically placed bayous provided low elevation points that allowed overwash depending on the direction of cross-barrier water level gradients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
Editorial Board Corrigendum to “Remotely sensed short-crested breaking waves in a laboratory directional wave basin” [Coastal Eng. (183), April 2023, 104327] Minutely monitoring of swash zone processes using a lidar-camera fusion system Assessing shorelines extracted from satellite imagery using coincident terrestrial lidar linescans HF radar estimation of ocean wave parameters: Second-order Doppler spectrum versus Bragg wave modulation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1