A comprehensive review of fiber-reinforced topology optimization for advanced polymer composites produced by automated manufacturing

IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Industrial and Engineering Polymer Research Pub Date : 2025-01-01 DOI:10.1016/j.aiepr.2024.05.002
Bence Szederkenyi , Norbert Krisztian Kovacs , Tibor Czigany
{"title":"A comprehensive review of fiber-reinforced topology optimization for advanced polymer composites produced by automated manufacturing","authors":"Bence Szederkenyi ,&nbsp;Norbert Krisztian Kovacs ,&nbsp;Tibor Czigany","doi":"10.1016/j.aiepr.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>This review paper focuses on Fiber-Reinforced Topology Optimization (FRTO) methods for automated manufacturing techniques, addressing topology and morphology optimization. Accordingly, the review introduces the main TO techniques and the common reinforcement path design strategies using concurrent and sequential optimization approaches. Furthermore, this paper examines the potential transformation of the conventional role of TO algorithms in structural optimization by integrating Artificial Intelligence (AI) into the optimization process [1]. We collected and categorized the most relevant papers from the past decade in the field of FRTO; comparisons were made based on appropriate metrics, including algorithm types, effectiveness, and validation environment. We emphasize practical considerations such as manufacturing constraints and algorithmic efficiency, addressing real-world usability aspects [2]. The analysis underscores the necessity for universally applicable benchmark methods and standardization to facilitate direct comparisons among various methodologies [3]. The main conclusions of the paper highlight the emerging trends in research, the potential of fiber-reinforced polymer composites designed by FRTO, the challenges facing the field, and the efficiency improvements and synergy with AI, indicating an evolving role for TO in structural optimization.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 113-131"},"PeriodicalIF":9.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504824000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper focuses on Fiber-Reinforced Topology Optimization (FRTO) methods for automated manufacturing techniques, addressing topology and morphology optimization. Accordingly, the review introduces the main TO techniques and the common reinforcement path design strategies using concurrent and sequential optimization approaches. Furthermore, this paper examines the potential transformation of the conventional role of TO algorithms in structural optimization by integrating Artificial Intelligence (AI) into the optimization process [1]. We collected and categorized the most relevant papers from the past decade in the field of FRTO; comparisons were made based on appropriate metrics, including algorithm types, effectiveness, and validation environment. We emphasize practical considerations such as manufacturing constraints and algorithmic efficiency, addressing real-world usability aspects [2]. The analysis underscores the necessity for universally applicable benchmark methods and standardization to facilitate direct comparisons among various methodologies [3]. The main conclusions of the paper highlight the emerging trends in research, the potential of fiber-reinforced polymer composites designed by FRTO, the challenges facing the field, and the efficiency improvements and synergy with AI, indicating an evolving role for TO in structural optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Industrial and Engineering Polymer Research
Advanced Industrial and Engineering Polymer Research Materials Science-Polymers and Plastics
CiteScore
26.30
自引率
0.00%
发文量
38
审稿时长
29 days
期刊最新文献
Editorial Board Fullerene-containing modifier of magnetoactive elastomer Synergistic enhancement in mechanical properties of graphene/MWCNT reinforced Polyaryletherketone – carbon fiber multi-scale composites: Experimental studies and finite element analysis Towards a new era of 2D materials-based multifunctional composite films: From innovation to evolution Highly-efficient flame-retarding unsaturated polyester resin via the designation of an expansive flame retardant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1