首页 > 最新文献

Advanced Industrial and Engineering Polymer Research最新文献

英文 中文
PDMS microspheres as rheological additives for PDMS-based DIW inks 用作 PDMS 基 DIW 油墨流变添加剂的 PDMS 微球
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.06.001
Utkarsh Ramesh , Jonathan Miller , Bryce Stottelmire , James Beach , Steven Patterson , Laura Cumming , Sabrina Wells Torres , Dakota Even , Petar Dvornic , Cory Berkland
Direct Ink Writing holds vast potential for additive manufacturing with broad material compatibility as long as appropriate rheological properties are exhibited by the material of choice. Additives are often included to attain the desired rheological properties for printing, but these same additives can yield products with undesirable mechanical properties. For example, silica fillers are used to create silicone inks appropriate for printing but yield cured structures that are too stiff. In this work, we investigate the applicability of PDMS microspheres as a rheological and thixotropic additive for PDMS based DIW inks. We utilize a facile oil-in-water emulsion method to reproducibly obtain small (∼5 μm) PDMS microspheres, which are then incorporated into PDMS-based inks. More traditional inks with fumed silica and thixotropic additive were compared with inks containing PDMS microspheres at equal volume loadings to determine whether the PDMS microspheres could impart the desired rheological properties for DIW. Inks including PDMS microspheres exhibited surprising thixotropic effects, which enabled prints with fidelity analogous to traditional ink employing silica filler, while producing mechanically softer prints.
{"title":"PDMS microspheres as rheological additives for PDMS-based DIW inks","authors":"Utkarsh Ramesh ,&nbsp;Jonathan Miller ,&nbsp;Bryce Stottelmire ,&nbsp;James Beach ,&nbsp;Steven Patterson ,&nbsp;Laura Cumming ,&nbsp;Sabrina Wells Torres ,&nbsp;Dakota Even ,&nbsp;Petar Dvornic ,&nbsp;Cory Berkland","doi":"10.1016/j.aiepr.2024.06.001","DOIUrl":"10.1016/j.aiepr.2024.06.001","url":null,"abstract":"<div><div>Direct Ink Writing holds vast potential for additive manufacturing with broad material compatibility as long as appropriate rheological properties are exhibited by the material of choice. Additives are often included to attain the desired rheological properties for printing, but these same additives can yield products with undesirable mechanical properties. For example, silica fillers are used to create silicone inks appropriate for printing but yield cured structures that are too stiff. In this work, we investigate the applicability of PDMS microspheres as a rheological and thixotropic additive for PDMS based DIW inks. We utilize a facile oil-in-water emulsion method to reproducibly obtain small (∼5 μm) PDMS microspheres, which are then incorporated into PDMS-based inks. More traditional inks with fumed silica and thixotropic additive were compared with inks containing PDMS microspheres at equal volume loadings to determine whether the PDMS microspheres could impart the desired rheological properties for DIW. Inks including PDMS microspheres exhibited surprising thixotropic effects, which enabled prints with fidelity analogous to traditional ink employing silica filler, while producing mechanically softer prints.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 1-9"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141397230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of polysaccharide-based biodegradable soft polymers in the healthcare sector 基于多糖的生物可降解软聚合物在医疗保健领域的作用
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.05.001
Zia Ullah Arif
Bio-based polymers have garnered significant interest across the manufacturing industry, global economy, and various engineering disciplines such as packaging, tissue engineering, controlled drug delivery, wound dressing, and textiles. In the current era, bio-based polymers, notably polysaccharides, offer a promising platform for constructing intricate and versatile structures in the biomedical sector. These structures encompass applications in tissue engineering and regenerative medicine (TERM), drug delivery devices, coatings for biomedical devices, and wearable sensors, thanks to their distinctive features such as inherent biocompatibility, flexibility, stretchability, mechanical strength, renewability, physiological activity, and favorable biological environment. This review offers a concise overview of diverse types of polysaccharide-based polymers and their composites, properties, and interactions with specific cells and tissues. The review also encompasses recent progress in tissue scaffolds designed for cartilage, skin, neural, vascular, cardiac, and bone regeneration, employing both conventional and modern manufacturing techniques. Additionally, it delves into the development of other biodegradable biomedical devices, including drug delivery systems (DDSs), antibacterial coatings on medical devices, wearable sensors, and electronic devices for the healthcare sector. Furthermore, it also elucidates research directions and future perspectives while emphasizing the importance of regulatory approvals and commitment to environmental sustainability. Finally, this well-organized and critical review is expected to assist practitioners and researchers in gaining a deeper understanding of current trends, challenges, and potential solutions, thereby harnessing the immense potential of polysaccharide-based biomaterials in the healthcare system. Additionally, the utilization of polysaccharides in the biomedical sector aligns with principles of nature, contributing to the reduction of carbon dioxide emissions and supporting the Sustainable Development Goals of the United Nations.
{"title":"The role of polysaccharide-based biodegradable soft polymers in the healthcare sector","authors":"Zia Ullah Arif","doi":"10.1016/j.aiepr.2024.05.001","DOIUrl":"10.1016/j.aiepr.2024.05.001","url":null,"abstract":"<div><div>Bio-based polymers have garnered significant interest across the manufacturing industry, global economy, and various engineering disciplines such as packaging, tissue engineering, controlled drug delivery, wound dressing, and textiles. In the current era, bio-based polymers, notably polysaccharides, offer a promising platform for constructing intricate and versatile structures in the biomedical sector. These structures encompass applications in tissue engineering and regenerative medicine (TERM), drug delivery devices, coatings for biomedical devices, and wearable sensors, thanks to their distinctive features such as inherent biocompatibility, flexibility, stretchability, mechanical strength, renewability, physiological activity, and favorable biological environment. This review offers a concise overview of diverse types of polysaccharide-based polymers and their composites, properties, and interactions with specific cells and tissues. The review also encompasses recent progress in tissue scaffolds designed for cartilage, skin, neural, vascular, cardiac, and bone regeneration, employing both conventional and modern manufacturing techniques. Additionally, it delves into the development of other biodegradable biomedical devices, including drug delivery systems (DDSs), antibacterial coatings on medical devices, wearable sensors, and electronic devices for the healthcare sector. Furthermore, it also elucidates research directions and future perspectives while emphasizing the importance of regulatory approvals and commitment to environmental sustainability. Finally, this well-organized and critical review is expected to assist practitioners and researchers in gaining a deeper understanding of current trends, challenges, and potential solutions, thereby harnessing the immense potential of polysaccharide-based biomaterials in the healthcare system. Additionally, the utilization of polysaccharides in the biomedical sector aligns with principles of nature, contributing to the reduction of carbon dioxide emissions and supporting the Sustainable Development Goals of the United Nations.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 132-156"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a new era of 2D materials-based multifunctional composite films: From innovation to evolution 迈向基于二维材料的多功能复合薄膜新时代:从创新到发展
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.04.002
Muhammad Yasir Khalid , Rehan Umer
Novel 2D materials are now at the forefront of developing advanced multifunctional composite films, due to their fascinating properties. Particularly, graphene and MXene-based 2D materials are recognized as promising candidates for multifunctional materials, due to their ability to enhance structure–function relationships and integrate with laminated composites. As expected, high mass production from low-cost and facile fabrication techniques for multifunctional composite films plays a pivotal role in their practical applications. Herein, we have covered a broad spectrum of 2D materials overview, covering all contributions to this field and summarizing the most pertinent literature available for developing multifunctional composite films which are attractive for advanced aircraft applications. Moreover, the integrated functions of the 2D materials-based multifunctional composite films such as sensing and actuation behaviour, thermal conductivity, and electromagnetic interference (EMI) shielding effectiveness are explored and their mechanisms for superior performance are elucidated. Additionally, we critically discuss the prevailing challenges and offer perspectives on this rapidly advancing field.
{"title":"Towards a new era of 2D materials-based multifunctional composite films: From innovation to evolution","authors":"Muhammad Yasir Khalid ,&nbsp;Rehan Umer","doi":"10.1016/j.aiepr.2024.04.002","DOIUrl":"10.1016/j.aiepr.2024.04.002","url":null,"abstract":"<div><div>Novel 2D materials are now at the forefront of developing advanced multifunctional composite films, due to their fascinating properties. Particularly, graphene and MXene-based 2D materials are recognized as promising candidates for multifunctional materials, due to their ability to enhance structure–function relationships and integrate with laminated composites. As expected, high mass production from low-cost and facile fabrication techniques for multifunctional composite films plays a pivotal role in their practical applications. Herein, we have covered a broad spectrum of 2D materials overview, covering all contributions to this field and summarizing the most pertinent literature available for developing multifunctional composite films which are attractive for advanced aircraft applications. Moreover, the integrated functions of the 2D materials-based multifunctional composite films such as sensing and actuation behaviour, thermal conductivity, and electromagnetic interference (EMI) shielding effectiveness are explored and their mechanisms for superior performance are elucidated. Additionally, we critically discuss the prevailing challenges and offer perspectives on this rapidly advancing field.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 76-112"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140762307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly-efficient flame-retarding unsaturated polyester resin via the designation of an expansive flame retardant 通过指定膨胀型阻燃剂实现高效阻燃的不饱和聚酯树脂
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.04.001
Ying-Ming Li, Shuang-Lin Hu, Hang-Ping Fang, Yao Deng, Chang-De Yang
Unsaturated polyester resins (UPR) are commonly used in electronics manufacturing and traditional construction, but their inherent flammability greatly limits their use. An expansive flame retardant EZ was prepared via the simple ionic reaction between the 2-Aminothiazole (AMZ) and ethylene diamine tetra methylene phosphoric acid (EDTMP). The thermal decomposition process of EZ and UPR/EZ and the flame retardancy of the compound were studied. The flame retardancy mechanism of EZ in UPR was analyzed in detail. When the EZ content was 15 wt%, the flame-retardant grade of the composite reached V-0. The flame-retardant efficiency was very high mainly through the interaction of gas phase and condensed phase. Interestingly, flame retardant EZ can perform expansion crosslinking in UPR, which can effectively promote carbon formation in UPR. Moreover, EZ itself can also expand to form dense and continuous carbon layers in UPR, which further elucidates the flame-retardant mechanism.
{"title":"Highly-efficient flame-retarding unsaturated polyester resin via the designation of an expansive flame retardant","authors":"Ying-Ming Li,&nbsp;Shuang-Lin Hu,&nbsp;Hang-Ping Fang,&nbsp;Yao Deng,&nbsp;Chang-De Yang","doi":"10.1016/j.aiepr.2024.04.001","DOIUrl":"10.1016/j.aiepr.2024.04.001","url":null,"abstract":"<div><div>Unsaturated polyester resins (UPR) are commonly used in electronics manufacturing and traditional construction, but their inherent flammability greatly limits their use. An expansive flame retardant EZ was prepared via the simple ionic reaction between the 2-Aminothiazole (AMZ) and ethylene diamine tetra methylene phosphoric acid (EDTMP). The thermal decomposition process of EZ and UPR/EZ and the flame retardancy of the compound were studied. The flame retardancy mechanism of EZ in UPR was analyzed in detail. When the EZ content was 15 wt%, the flame-retardant grade of the composite reached V-0. The flame-retardant efficiency was very high mainly through the interaction of gas phase and condensed phase. Interestingly, flame retardant EZ can perform expansion crosslinking in UPR, which can effectively promote carbon formation in UPR. Moreover, EZ itself can also expand to form dense and continuous carbon layers in UPR, which further elucidates the flame-retardant mechanism.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 10-19"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic enhancement in mechanical properties of graphene/MWCNT reinforced Polyaryletherketone – carbon fiber multi-scale composites: Experimental studies and finite element analysis 石墨烯/MWCNT 增强聚芳醚酮-碳纤维多尺度复合材料力学性能的协同增强:实验研究与有限元分析
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.02.002
Sarath Kumar Painkal , Meera Balachandran , Karingamanna Jayanarayanan , Nagaarjun Sridhar , Sanjeev Kumar
This investigation focuses on the synergistic performance improvement in graphene/MWCNT reinforced Polyaryletherketone (PAEK) - carbon fiber (CF) multi-scale composites. FTIR revealed the chemical interactions while HRTEM, XRD and 3D X-ray microscopy gave insight into nanofiller dispersion and microstructural features. The functional groups on nanofillers along with structural features integrated various components of the multi-scale composites by formation of graphene/MWCNT/CF complex network that provided larger interfacial area, bridging effect and physico-chemical interaction with PAEK while restricting its segmental mobility. Multi-scale composites displayed significantly improved strength, fracture toughness, interlaminar shear strength, glass transition temperature and tribological performance. Under dynamic load, graphene/MWCNT reinforcement of matrix and CF synergistically increases the storage modulus and energy absorption characteristics. Wear and fracture surface morphology of nano and multi-scale composites showed ductile failure confirming interfacial adhesion. The failure behavior in experimental studies was supported by Abaqus/Explicit-based FEM models of fracture toughness response. This work provides a promising avenue to develop next generation high performance thermoplastic composites for structural applications.
{"title":"Synergistic enhancement in mechanical properties of graphene/MWCNT reinforced Polyaryletherketone – carbon fiber multi-scale composites: Experimental studies and finite element analysis","authors":"Sarath Kumar Painkal ,&nbsp;Meera Balachandran ,&nbsp;Karingamanna Jayanarayanan ,&nbsp;Nagaarjun Sridhar ,&nbsp;Sanjeev Kumar","doi":"10.1016/j.aiepr.2024.02.002","DOIUrl":"10.1016/j.aiepr.2024.02.002","url":null,"abstract":"<div><div>This investigation focuses on the synergistic performance improvement in graphene/MWCNT reinforced Polyaryletherketone (PAEK) - carbon fiber (CF) multi-scale composites. FTIR revealed the chemical interactions while HRTEM, XRD and 3D X-ray microscopy gave insight into nanofiller dispersion and microstructural features. The functional groups on nanofillers along with structural features integrated various components of the multi-scale composites by formation of graphene/MWCNT/CF complex network that provided larger interfacial area, bridging effect and physico-chemical interaction with PAEK while restricting its segmental mobility. Multi-scale composites displayed significantly improved strength, fracture toughness, interlaminar shear strength, glass transition temperature and tribological performance. Under dynamic load, graphene/MWCNT reinforcement of matrix and CF synergistically increases the storage modulus and energy absorption characteristics. Wear and fracture surface morphology of nano and multi-scale composites showed ductile failure confirming interfacial adhesion. The failure behavior in experimental studies was supported by Abaqus/Explicit-based FEM models of fracture toughness response. This work provides a promising avenue to develop next generation high performance thermoplastic composites for structural applications.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 20-36"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140083228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fullerene-containing modifier of magnetoactive elastomer 磁性弹性体的富勒烯连接改性剂
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.02.001
М.A. Vasilyeva, F.Yu. Sharikov, I.A. Bogdanov
Magnetoactive elastomer is a functional material whose properties are controlled by the parameters of the external magnetic field. A modifier that creates ordered structures with controlled nanoscale morphology is capable of intensifying the ability of a material to transfer charge.
The modifier was obtained by dissociating C60 fullerene in eugenol at an elevated temperature in a water bath for 6 h. The fullerene content in the samples was 3.5 g/L. The preparation of 3 groups of modifier solutions to study their properties took 60 days. Two groups included solutions obtained through diffuse dissolution, one group - with an additional mechanical action. A study of rheological, optical and electrical conductivity properties was carried out to assess changes in the structure of the solutions. During the studies, thixotropic deposition of the air capsule was noted in some samples. To describe the hydraulic size of deposited objects, a nonlinear dependence is formulated. Spectral analysis of the solutions revealed differences in the optical properties of the samples obtained by various methods. The optical activity of those that have not been subjected to an additional impact is increasing over time. This causes a change in the solution structure and the conformation of the complexes of the solvent molecular structure and C60. Ultimately, this leads to noticeable changes in electrical conductivity properties. The change in the resistivity values of some samples relative to the solvent is associated with the influence of the formed structural aggregation of fullerene molecules, as well as with several types of polarization interactions. Classification of the influence of conformational and electronic characteristics of solvent molecules made it possible to systematize the factors influencing the solvent dissolving ability. The formation of non-centrosymmetric structures in solutions in the form of fractal aggregates of dissociated fullerene was noted. The approach to describing the model for the formation of a cluster structure is based on the principle of increasing the fractional dimension during the dissociation process. Aggregation, limited by diffusion processes, proceeds to limit the reaction rate; at the final stage, spatial limitation dominates.
Studying the molecular dynamics of aggregates formation in various solutions allows improved understanding the principles of a fractal structure formation. The results obtained will be used in the development of conductive functional polymers with controlled properties.
{"title":"Fullerene-containing modifier of magnetoactive elastomer","authors":"М.A. Vasilyeva,&nbsp;F.Yu. Sharikov,&nbsp;I.A. Bogdanov","doi":"10.1016/j.aiepr.2024.02.001","DOIUrl":"10.1016/j.aiepr.2024.02.001","url":null,"abstract":"<div><div>Magnetoactive elastomer is a functional material whose properties are controlled by the parameters of the external magnetic field. A modifier that creates ordered structures with controlled nanoscale morphology is capable of intensifying the ability of a material to transfer charge.</div><div>The modifier was obtained by dissociating C<sub>60</sub> fullerene in eugenol at an elevated temperature in a water bath for 6 h. The fullerene content in the samples was 3.5 g/L. The preparation of 3 groups of modifier solutions to study their properties took 60 days. Two groups included solutions obtained through diffuse dissolution, one group - with an additional mechanical action. A study of rheological, optical and electrical conductivity properties was carried out to assess changes in the structure of the solutions. During the studies, thixotropic deposition of the air capsule was noted in some samples. To describe the hydraulic size of deposited objects, a nonlinear dependence is formulated. Spectral analysis of the solutions revealed differences in the optical properties of the samples obtained by various methods. The optical activity of those that have not been subjected to an additional impact is increasing over time. This causes a change in the solution structure and the conformation of the complexes of the solvent molecular structure and C<sub>60</sub>. Ultimately, this leads to noticeable changes in electrical conductivity properties. The change in the resistivity values of some samples relative to the solvent is associated with the influence of the formed structural aggregation of fullerene molecules, as well as with several types of polarization interactions. Classification of the influence of conformational and electronic characteristics of solvent molecules made it possible to systematize the factors influencing the solvent dissolving ability. The formation of non-centrosymmetric structures in solutions in the form of fractal aggregates of dissociated fullerene was noted. The approach to describing the model for the formation of a cluster structure is based on the principle of increasing the fractional dimension during the dissociation process. Aggregation, limited by diffusion processes, proceeds to limit the reaction rate; at the final stage, spatial limitation dominates.</div><div>Studying the molecular dynamics of aggregates formation in various solutions allows improved understanding the principles of a fractal structure formation. The results obtained will be used in the development of conductive functional polymers with controlled properties.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 63-75"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic-responsive triple shape memory polymer from bio-based benzoxazine/urethane polymer alloys with iron oxide nanoparticles 生物基苯并恶嗪/聚氨酯聚合物合金与氧化铁纳米粒子的磁响应三重形状记忆聚合物
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.07.001
Kullanard Ruenpanya , Phattarin Mora , Panagiotis Karagiannidis , Kittipon Bunyanuwat , Sarawut Rimdusit
Novel magnetic-responsive triple shape memory polymers (SMPs) derived from bio-based benzoxazine-urethane (V-fa/PU) polymer alloys containing iron oxide nanoparticles (Fe3O4 NPs) were developed in this work. Shape memory effect and curing behavior of the alloys were investigated at various bio-based PU contents. The polymerization of V-fa/PU polymer alloys with a heterogeneous network generated a broad glass transition temperature, which is a crucial feature for the development of triple SMPs. The influence of Fe3O4 NPs incorporation into the polymer nanocomposites on the SMP performance triggered by magnetic fields was also investigated. It was found that the addition of Fe3O4 NPs can enhance the dynamic mechanical properties and magnetic characteristics of the V-fa/PU polymer alloys thanks to the superparamagnetic property of Fe3O4 NPs. Moreover, the performance of the SMPs based on V-fa/PU polymer nanocomposites filled with Fe3O4 NPs showed high shape fixity of up to 98%, a shape recovery of 98%, and a recovering time of 8 s. Furthermore, bio-based V-fa/PU polymer alloys containing Fe3O4 NPs were developed as magnetic responsive triple SMPs with shape fixity in the range of 95–97% and shape recovery in the range of 85–95%. The results suggested that magnetic responsive triple SMPs from bio-based V-fa/PU polymer alloys filled with Fe3O4 NPs are promising candidate for advanced applications.
{"title":"Magnetic-responsive triple shape memory polymer from bio-based benzoxazine/urethane polymer alloys with iron oxide nanoparticles","authors":"Kullanard Ruenpanya ,&nbsp;Phattarin Mora ,&nbsp;Panagiotis Karagiannidis ,&nbsp;Kittipon Bunyanuwat ,&nbsp;Sarawut Rimdusit","doi":"10.1016/j.aiepr.2024.07.001","DOIUrl":"10.1016/j.aiepr.2024.07.001","url":null,"abstract":"<div><div>Novel magnetic-responsive triple shape memory polymers (SMPs) derived from bio-based benzoxazine-urethane (V-fa/PU) polymer alloys containing iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) were developed in this work. Shape memory effect and curing behavior of the alloys were investigated at various bio-based PU contents. The polymerization of V-fa/PU polymer alloys with a heterogeneous network generated a broad glass transition temperature, which is a crucial feature for the development of triple SMPs. The influence of Fe<sub>3</sub>O<sub>4</sub> NPs incorporation into the polymer nanocomposites on the SMP performance triggered by magnetic fields was also investigated. It was found that the addition of Fe<sub>3</sub>O<sub>4</sub> NPs can enhance the dynamic mechanical properties and magnetic characteristics of the V-fa/PU polymer alloys thanks to the superparamagnetic property of Fe<sub>3</sub>O<sub>4</sub> NPs. Moreover, the performance of the SMPs based on V-fa/PU polymer nanocomposites filled with Fe<sub>3</sub>O<sub>4</sub> NPs showed high shape fixity of up to 98%, a shape recovery of 98%, and a recovering time of 8 s. Furthermore, bio-based V-fa/PU polymer alloys containing Fe<sub>3</sub>O<sub>4</sub> NPs were developed as magnetic responsive triple SMPs with shape fixity in the range of 95–97% and shape recovery in the range of 85–95%. The results suggested that magnetic responsive triple SMPs from bio-based V-fa/PU polymer alloys filled with Fe<sub>3</sub>O<sub>4</sub> NPs are promising candidate for advanced applications.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 37-47"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tannic acid-based intumescent flame retardant for improving flame retardancy of epoxy composites 用于提高环氧树脂复合材料阻燃性能的单宁酸基膨胀型阻燃剂
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.04.003
Xiaosui Chen , Yaoting Ma , Shuzheng Liu , Aiqing Zhang , Wei Liu , Shengchao Huang
A biomass intumescent flame retardant (TA-g-DOPO) was fabricated from tannic acid (TA) and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) through the bridge of silane coupling agent (KH560), which showed a low degradation rate at Tmax of 2.71%/min and a high char yield of 55.8%. Then, various EP composites with 4–10% TA-g-DOPO were prepared. Due to the presence of flexible silane structures and rigid phosphaphenanthrene rings as well as the remained phenol groups (tending to form hydrogen bonds with epoxy matrix), EP composite with a high content of 10% TA-g-DOPO exhibited no deterioration on the tensile and impact properties as well as the glass transition temperature (Tg) when compared with pure EP. More importantly, it reached a high LOI value of 30.3% and passed a V-0 rating in the UL-94 burning test. Additionally, its peak heat release rate (PHRR), total heat release (THR) and average mass loss rate (av-MLR) decreased by 23.2%, 15.5% and 30.2% respectively. Analyses from the condensed char and pyrolysis gases indicated that the improved flame retardancy was mainly attributed to the cooperation of the free-radical quenching effect of P-containing radicals and phenoxy radicals working in stages (derived from DOPO and TA respectively) and the physical barrier effect caused by the highly graphited, intumescent and porous char layer (reinforced by P- and Si-containing cross-linked structures). This work provides a sustainable biomass flame retardant with good flame-retarding efficiency based on TA.
{"title":"A tannic acid-based intumescent flame retardant for improving flame retardancy of epoxy composites","authors":"Xiaosui Chen ,&nbsp;Yaoting Ma ,&nbsp;Shuzheng Liu ,&nbsp;Aiqing Zhang ,&nbsp;Wei Liu ,&nbsp;Shengchao Huang","doi":"10.1016/j.aiepr.2024.04.003","DOIUrl":"10.1016/j.aiepr.2024.04.003","url":null,"abstract":"<div><div>A biomass intumescent flame retardant (TA-g-DOPO) was fabricated from tannic acid (TA) and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) through the bridge of silane coupling agent (KH560), which showed a low degradation rate at T<sub>max</sub> of 2.71%/min and a high char yield of 55.8%. Then, various EP composites with 4–10% TA-g-DOPO were prepared. Due to the presence of flexible silane structures and rigid phosphaphenanthrene rings as well as the remained phenol groups (tending to form hydrogen bonds with epoxy matrix), EP composite with a high content of 10% TA-g-DOPO exhibited no deterioration on the tensile and impact properties as well as the glass transition temperature (T<sub>g</sub>) when compared with pure EP. More importantly, it reached a high LOI value of 30.3% and passed a V-0 rating in the UL-94 burning test. Additionally, its peak heat release rate (PHRR), total heat release (THR) and average mass loss rate (av-MLR) decreased by 23.2%, 15.5% and 30.2% respectively. Analyses from the condensed char and pyrolysis gases indicated that the improved flame retardancy was mainly attributed to the cooperation of the free-radical quenching effect of P-containing radicals and phenoxy radicals working in stages (derived from DOPO and TA respectively) and the physical barrier effect caused by the highly graphited, intumescent and porous char layer (reinforced by P- and Si-containing cross-linked structures). This work provides a sustainable biomass flame retardant with good flame-retarding efficiency based on TA.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 48-62"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140793662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of fiber-reinforced topology optimization for advanced polymer composites produced by automated manufacturing
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2025-01-01 DOI: 10.1016/j.aiepr.2024.05.002
Bence Szederkenyi , Norbert Krisztian Kovacs , Tibor Czigany
This review paper focuses on Fiber-Reinforced Topology Optimization (FRTO) methods for automated manufacturing techniques, addressing topology and morphology optimization. Accordingly, the review introduces the main TO techniques and the common reinforcement path design strategies using concurrent and sequential optimization approaches. Furthermore, this paper examines the potential transformation of the conventional role of TO algorithms in structural optimization by integrating Artificial Intelligence (AI) into the optimization process [1]. We collected and categorized the most relevant papers from the past decade in the field of FRTO; comparisons were made based on appropriate metrics, including algorithm types, effectiveness, and validation environment. We emphasize practical considerations such as manufacturing constraints and algorithmic efficiency, addressing real-world usability aspects [2]. The analysis underscores the necessity for universally applicable benchmark methods and standardization to facilitate direct comparisons among various methodologies [3]. The main conclusions of the paper highlight the emerging trends in research, the potential of fiber-reinforced polymer composites designed by FRTO, the challenges facing the field, and the efficiency improvements and synergy with AI, indicating an evolving role for TO in structural optimization.
{"title":"A comprehensive review of fiber-reinforced topology optimization for advanced polymer composites produced by automated manufacturing","authors":"Bence Szederkenyi ,&nbsp;Norbert Krisztian Kovacs ,&nbsp;Tibor Czigany","doi":"10.1016/j.aiepr.2024.05.002","DOIUrl":"10.1016/j.aiepr.2024.05.002","url":null,"abstract":"<div><div>This review paper focuses on Fiber-Reinforced Topology Optimization (FRTO) methods for automated manufacturing techniques, addressing topology and morphology optimization. Accordingly, the review introduces the main TO techniques and the common reinforcement path design strategies using concurrent and sequential optimization approaches. Furthermore, this paper examines the potential transformation of the conventional role of TO algorithms in structural optimization by integrating Artificial Intelligence (AI) into the optimization process [1]. We collected and categorized the most relevant papers from the past decade in the field of FRTO; comparisons were made based on appropriate metrics, including algorithm types, effectiveness, and validation environment. We emphasize practical considerations such as manufacturing constraints and algorithmic efficiency, addressing real-world usability aspects [2]. The analysis underscores the necessity for universally applicable benchmark methods and standardization to facilitate direct comparisons among various methodologies [3]. The main conclusions of the paper highlight the emerging trends in research, the potential of fiber-reinforced polymer composites designed by FRTO, the challenges facing the field, and the efficiency improvements and synergy with AI, indicating an evolving role for TO in structural optimization.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 1","pages":"Pages 113-131"},"PeriodicalIF":9.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple modification of phenylphosphonic acid to construct polyester-cotton fabrics with high flame retardancy 通过简单改性苯基膦酸构建高阻燃性聚酯-棉织物
IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-07-01 DOI: 10.1016/j.aiepr.2024.03.001
Li-Yao Zhang, Wan-Meng Song, Yun Liu

Polyester-cotton fabrics (PTCO) have excellent properties and are ubiquitous in daily life, but their serious flammability brings great safety hazards to people's lives. This study used phenylphosphonic acid (PPOA) and urea as raw materials to prepare a flame retardant named POU. PTCO/POU was prepared by the pad-dry-cure technique, and the performance was compared with that of PTCO/PPOA, revealing many interesting phenomena. Based on the gas phase and condensed phase flame-retardant mechanism brought by P/N synergy, PTCO/POU had better flame retardancy than PTCO/PPOA did. The damaged length was 6.7 cm, and the limiting oxygen index (LOI) value was 30.1%. The char residues after burning were complete and denser with a higher degree of graphitization. Thermogravimetric analysis showed that POU can significantly reduce the Rmax of PTCO, and improve its thermal stability in high temperature zones. The CCT results showed that PTCO/POU had the longest time to ignition and the smallest fire growth index, which was of great significance for reducing fire risk. The TG-FTIR results showed that the volatile products of PTCO/POU were greatly reduced, and during the burning process, NH3 was produced to dilute the concentration of combustible gases. In addition, PTCO/POU also had better whiteness performance than PTCO/PPOA did. This work greatly improved the flame retardancy of PTCO in a simple way and expanded its application prospects.

涤棉织物(PTCO)性能优良,在日常生活中无处不在,但其严重的易燃性给人们的生活带来了极大的安全隐患。本研究以苯基膦酸(PPOA)和尿素为原料,制备了一种名为 POU 的阻燃剂。采用垫干固化技术制备了 PTCO/POU,并与 PTCO/PPOA 进行了性能对比,发现了许多有趣的现象。基于 P/N 协同作用带来的气相和凝聚相阻燃机理,PTCO/POU 的阻燃性能比 PTCO/PPOA 更好。受损长度为 6.7 厘米,极限氧指数(LOI)值为 30.1%。燃烧后的残炭完整而致密,石墨化程度较高。热重分析表明,POU 能显著降低 PTCO 的 Rmax,提高其在高温区的热稳定性。CCT 结果表明,PTCO/POU 的着火时间最长,火势增长指数最小,这对降低火灾风险具有重要意义。TG-FTIR 结果表明,PTCO/POU 的挥发物大大减少,在燃烧过程中产生的 NH3 稀释了可燃气体的浓度。此外,PTCO/POU 的白度性能也优于 PTCO/PPOA。这项工作以简单的方法大大提高了 PTCO 的阻燃性,拓展了其应用前景。
{"title":"Simple modification of phenylphosphonic acid to construct polyester-cotton fabrics with high flame retardancy","authors":"Li-Yao Zhang,&nbsp;Wan-Meng Song,&nbsp;Yun Liu","doi":"10.1016/j.aiepr.2024.03.001","DOIUrl":"10.1016/j.aiepr.2024.03.001","url":null,"abstract":"<div><p>Polyester-cotton fabrics (PTCO) have excellent properties and are ubiquitous in daily life, but their serious flammability brings great safety hazards to people's lives. This study used phenylphosphonic acid (PPOA) and urea as raw materials to prepare a flame retardant named POU. PTCO/POU was prepared by the pad-dry-cure technique, and the performance was compared with that of PTCO/PPOA, revealing many interesting phenomena. Based on the gas phase and condensed phase flame-retardant mechanism brought by P/N synergy, PTCO/POU had better flame retardancy than PTCO/PPOA did. The damaged length was 6.7 cm, and the limiting oxygen index (LOI) value was 30.1%. The char residues after burning were complete and denser with a higher degree of graphitization. Thermogravimetric analysis showed that POU can significantly reduce the R<sub>max</sub> of PTCO, and improve its thermal stability in high temperature zones. The CCT results showed that PTCO/POU had the longest time to ignition and the smallest fire growth index, which was of great significance for reducing fire risk. The TG-FTIR results showed that the volatile products of PTCO/POU were greatly reduced, and during the burning process, NH<sub>3</sub> was produced to dilute the concentration of combustible gases. In addition, PTCO/POU also had better whiteness performance than PTCO/PPOA did. This work greatly improved the flame retardancy of PTCO in a simple way and expanded its application prospects.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 344-354"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000113/pdfft?md5=cfe31ccbbff84c7119147e8c46b3349f&pid=1-s2.0-S2542504824000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140277686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Industrial and Engineering Polymer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1