Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2024.03.001
Li-Yao Zhang, Wan-Meng Song, Yun Liu
Polyester-cotton fabrics (PTCO) have excellent properties and are ubiquitous in daily life, but their serious flammability brings great safety hazards to people's lives. This study used phenylphosphonic acid (PPOA) and urea as raw materials to prepare a flame retardant named POU. PTCO/POU was prepared by the pad-dry-cure technique, and the performance was compared with that of PTCO/PPOA, revealing many interesting phenomena. Based on the gas phase and condensed phase flame-retardant mechanism brought by P/N synergy, PTCO/POU had better flame retardancy than PTCO/PPOA did. The damaged length was 6.7 cm, and the limiting oxygen index (LOI) value was 30.1%. The char residues after burning were complete and denser with a higher degree of graphitization. Thermogravimetric analysis showed that POU can significantly reduce the Rmax of PTCO, and improve its thermal stability in high temperature zones. The CCT results showed that PTCO/POU had the longest time to ignition and the smallest fire growth index, which was of great significance for reducing fire risk. The TG-FTIR results showed that the volatile products of PTCO/POU were greatly reduced, and during the burning process, NH3 was produced to dilute the concentration of combustible gases. In addition, PTCO/POU also had better whiteness performance than PTCO/PPOA did. This work greatly improved the flame retardancy of PTCO in a simple way and expanded its application prospects.
{"title":"Simple modification of phenylphosphonic acid to construct polyester-cotton fabrics with high flame retardancy","authors":"Li-Yao Zhang, Wan-Meng Song, Yun Liu","doi":"10.1016/j.aiepr.2024.03.001","DOIUrl":"10.1016/j.aiepr.2024.03.001","url":null,"abstract":"<div><p>Polyester-cotton fabrics (PTCO) have excellent properties and are ubiquitous in daily life, but their serious flammability brings great safety hazards to people's lives. This study used phenylphosphonic acid (PPOA) and urea as raw materials to prepare a flame retardant named POU. PTCO/POU was prepared by the pad-dry-cure technique, and the performance was compared with that of PTCO/PPOA, revealing many interesting phenomena. Based on the gas phase and condensed phase flame-retardant mechanism brought by P/N synergy, PTCO/POU had better flame retardancy than PTCO/PPOA did. The damaged length was 6.7 cm, and the limiting oxygen index (LOI) value was 30.1%. The char residues after burning were complete and denser with a higher degree of graphitization. Thermogravimetric analysis showed that POU can significantly reduce the R<sub>max</sub> of PTCO, and improve its thermal stability in high temperature zones. The CCT results showed that PTCO/POU had the longest time to ignition and the smallest fire growth index, which was of great significance for reducing fire risk. The TG-FTIR results showed that the volatile products of PTCO/POU were greatly reduced, and during the burning process, NH<sub>3</sub> was produced to dilute the concentration of combustible gases. In addition, PTCO/POU also had better whiteness performance than PTCO/PPOA did. This work greatly improved the flame retardancy of PTCO in a simple way and expanded its application prospects.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 344-354"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000113/pdfft?md5=cfe31ccbbff84c7119147e8c46b3349f&pid=1-s2.0-S2542504824000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140277686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2024.01.001
Lu He , Yong Cao , Hui-Ming Qu , Yong-Kui Zhang , Qing-Qing Bi , De-Yi Wang
Asphalt pavement is widely applied to the surface in high-grade highway tunnels due to its prominent preponderance in road performance. However, asphalt is flammable as the binder material to adhere the aggregates and other additives, resulting that a fire in the semi-closed space of the tunnel can ignite and burn asphalt pavement to generate a large amount of heat and smoke. Therefore, further promoting the advance of flame-retardant asphalt pavement is essential to ensure security in tunnels. We gathered the relevant standards or regulations of diverse nations and test methods concerning flame retardancy of asphalt. Then we reviewed the research status of flame-retardant asphalt mixture, including thermal characteristics of the asphalt and four fractions, the flame retardants applicable to asphalt, and effects on other components. This review demonstrated that establishing universal standards and test methods is a research basis specifically for flame-retardant asphalt pavement. To optimize the flame retardancy of asphalt pavement, it should focus on the synergy with diversified aspects such as asphalt binders, multiple flame retardants, aggregates, mineral powders, fibers, and other additives.
{"title":"Advances in flame retardancy of asphalt pavement: A review","authors":"Lu He , Yong Cao , Hui-Ming Qu , Yong-Kui Zhang , Qing-Qing Bi , De-Yi Wang","doi":"10.1016/j.aiepr.2024.01.001","DOIUrl":"10.1016/j.aiepr.2024.01.001","url":null,"abstract":"<div><p>Asphalt pavement is widely applied to the surface in high-grade highway tunnels due to its prominent preponderance in road performance. However, asphalt is flammable as the binder material to adhere the aggregates and other additives, resulting that a fire in the semi-closed space of the tunnel can ignite and burn asphalt pavement to generate a large amount of heat and smoke. Therefore, further promoting the advance of flame-retardant asphalt pavement is essential to ensure security in tunnels. We gathered the relevant standards or regulations of diverse nations and test methods concerning flame retardancy of asphalt. Then we reviewed the research status of flame-retardant asphalt mixture, including thermal characteristics of the asphalt and four fractions, the flame retardants applicable to asphalt, and effects on other components. This review demonstrated that establishing universal standards and test methods is a research basis specifically for flame-retardant asphalt pavement. To optimize the flame retardancy of asphalt pavement, it should focus on the synergy with diversified aspects such as asphalt binders, multiple flame retardants, aggregates, mineral powders, fibers, and other additives.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 273-294"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000071/pdfft?md5=b0736a0cf7c5b842805cd90446b936a2&pid=1-s2.0-S2542504824000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139637527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polylactic acid/Polycarbonate (PLA/PC) blend was prepared via twin screw extruder by taking the bio-based content as much as possible and the better mechanical, thermal, and impact properties into consideration. Flame retardant (FR) performance of the PLA/PC blend was improved by using the mixture of ammonium polyphosphate, triphenyl phosphate, and zinc borate. FR properties of PLA/PC blend was evaluated according to the UL 94 test standard. The variations in tensile and flexural strength, and Izod-notched impact strength values were determined. In order to reduce the total amount of flame retardant additive, instead of using a mixture of TPP and APP (weight ratio of 2/1) at 21 wt% weight fraction, 1 wt% Zinc borate together with 18 wt% TPP-APP mixture was used and obtained V0 rating for the thickness of 1.5 mm. It was reported that weight fraction of flame retardant additives (APP and TPP) was successfully reduced by using a mixture of APP, TPP and ZnB without degrading the mechanical properties such as tensile and flexural strengths. Using less total FR additive weight (19 wt%) led to 15 and 24% higher tensile and flexural strength values, respectively, compared to higher FR additive weight (21 wt%).
{"title":"Improving the flame retardancy properties of PLA/PC blends","authors":"Yoldas Seki , Merve Saglam , Sibel Aker , Akın Isbilir , Mehmet Sarikanat , Lutfiye Altay","doi":"10.1016/j.aiepr.2023.09.003","DOIUrl":"10.1016/j.aiepr.2023.09.003","url":null,"abstract":"<div><p>Polylactic acid/Polycarbonate (PLA/PC) blend was prepared via twin screw extruder by taking the bio-based content as much as possible and the better mechanical, thermal, and impact properties into consideration. Flame retardant (FR) performance of the PLA/PC blend was improved by using the mixture of ammonium polyphosphate, triphenyl phosphate, and zinc borate. FR properties of PLA/PC blend was evaluated according to the UL 94 test standard. The variations in tensile and flexural strength, and Izod-notched impact strength values were determined. In order to reduce the total amount of flame retardant additive, instead of using a mixture of TPP and APP (weight ratio of 2/1) at 21 wt% weight fraction, 1 wt% Zinc borate together with 18 wt% TPP-APP mixture was used and obtained V0 rating for the thickness of 1.5 mm. It was reported that weight fraction of flame retardant additives (APP and TPP) was successfully reduced by using a mixture of APP, TPP and ZnB without degrading the mechanical properties such as tensile and flexural strengths. Using less total FR additive weight (19 wt%) led to 15 and 24% higher tensile and flexural strength values, respectively, compared to higher FR additive weight (21 wt%).</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 338-343"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000568/pdfft?md5=e337518a513136a1abd1581aefa73858&pid=1-s2.0-S2542504823000568-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135348334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of epoxy resins and their composites. However, the thermal conductivity of conventional epoxy resins is relatively low, which could cause major heat dissipation issues. Therefore, the thermal conductivity enhancement of epoxy resins has long been a hot research topic in both academia and industry. In recent years, many promising advances have been made at the technical and mechanistic levels. This review includes the different approaches, the thermal conduction mechanisms implied, and the main research progresses. The research and academic achievements are mainly focused on the development of intrinsically liquid crystal epoxy resins and their composites, and the addition of fillers on amorphous epoxy resins. Finally, the challenges and prospects for thermal conductive epoxy resins are provided. Notably, this review can provide a more comprehensive understanding of thermally conductive epoxy resins and a guideline for the cutting-edge development direction of thermally conductive epoxy resins.
{"title":"Review of thermal conductivity in epoxy thermosets and composites: Mechanisms, parameters, and filler influences","authors":"Mei-Hui Zhou , Guang-Zhong Yin , Silvia González Prolongo","doi":"10.1016/j.aiepr.2023.08.003","DOIUrl":"10.1016/j.aiepr.2023.08.003","url":null,"abstract":"<div><p>Rapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of epoxy resins and their composites. However, the thermal conductivity of conventional epoxy resins is relatively low, which could cause major heat dissipation issues. Therefore, the thermal conductivity enhancement of epoxy resins has long been a hot research topic in both academia and industry. In recent years, many promising advances have been made at the technical and mechanistic levels. This review includes the different approaches, the thermal conduction mechanisms implied, and the main research progresses. The research and academic achievements are mainly focused on the development of intrinsically liquid crystal epoxy resins and their composites, and the addition of fillers on amorphous epoxy resins. Finally, the challenges and prospects for thermal conductive epoxy resins are provided. Notably, this review can provide a more comprehensive understanding of thermally conductive epoxy resins and a guideline for the cutting-edge development direction of thermally conductive epoxy resins.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 295-308"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000532/pdfft?md5=e7e3a1b36f79eefdc0980941ac50c5e9&pid=1-s2.0-S2542504823000532-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46622825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2023.05.002
Juergen H. Troitzsch
The fire performance durability of products containing flame retardants may be significantly affected after aging and mechanical recycling. Publications of the last ten years show that even under severe conditions simulating outdoor applications, progress has been made in using halogenated and halogenfree flame retardants with high temperature stability, stabilizers acting as flame retardants, improved coating formulations for wood and steel less sensible to hydrolysis by using topcoats and layer by layer approaches. Mechanical recycling is possible for halogenated and non-halogenated flame retardant systems, but has only been studied for virgin thermoplastics which may be available from post-industrial waste. Post-consumer waste is still unsuitable due to its mixed contents. Examples from practice show that the lifetime of products containing flame retardants may be durable for decades in indoor and probably for a much shorter time in outdoor applications.
{"title":"Fire performance durability of flame retardants in polymers and coatings","authors":"Juergen H. Troitzsch","doi":"10.1016/j.aiepr.2023.05.002","DOIUrl":"10.1016/j.aiepr.2023.05.002","url":null,"abstract":"<div><p>The fire performance durability of products containing flame retardants may be significantly affected after aging and mechanical recycling. Publications of the last ten years show that even under severe conditions simulating outdoor applications, progress has been made in using halogenated and halogenfree flame retardants with high temperature stability, stabilizers acting as flame retardants, improved coating formulations for wood and steel less sensible to hydrolysis by using topcoats and layer by layer approaches. Mechanical recycling is possible for halogenated and non-halogenated flame retardant systems, but has only been studied for virgin thermoplastics which may be available from post-industrial waste. Post-consumer waste is still unsuitable due to its mixed contents. Examples from practice show that the lifetime of products containing flame retardants may be durable for decades in indoor and probably for a much shorter time in outdoor applications.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 263-272"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000362/pdfft?md5=107928d20686e48834bbebb0e758db72&pid=1-s2.0-S2542504823000362-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45376024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2024.03.003
Yun-Fei He , Kai Ning , Cong-Yun Zhang , Zhu-Bao Shao , Bin Zhao
The substitutional structure of cyclotriphosphazene derivatives significantly influences their flame-retardant effectiveness. A cyclotriphosphazene derivative with triazole group, referred to as hexa(1,2,4-triazol-3-ylamine) cyclotriphosphazene (HATA), was utilized to improve the flame retardancy of epoxy resin (EP). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were employed to characterize the thermal properties of EP/HATA thermosets. HATA facilitated the curing of EP due to its triazole and secondary amine structure. EP/HATA thermosets exhibited improved char-forming ability and storage modulus, attributed to the rigid cyclophosphonitrile structure of HATA. As a result of incorporating 5% HATA with 0.73 wt% phosphorus, EP passed UL-94 V-0 level. Subsequent analysis using a cone calorimeter revealed obvious reductions in the peak heat release rate, fire growth rate, and total smoke production of EP with the addition of HATA. Simultaneously, there was a significant enhancement in the char yield of EP during combustion, indicating notable improvements in fire safety. Additional investigations, including X-ray photoelectron spectroscopy, scanning electron microscopy, TG-FTIR, and pyrolysis gas chromatography/mass spectrometry, were employed to analyze the char residue and gaseous volatiles. HATA promoted the formation of a dense, continuous, and intumescent char layer containing cyclophosphonitrile structure in EP. Moreover, the decomposition of HATA released a notable quantity of nitrogen-containing volatiles, effectively mitigating flammable gases originating from the EP matrix in gaseous phase. A biphasic flame-retardant mode of action was proposed, underscoring cooperative flame-retardant effects arising from the interaction between triazole substituents and cyclophosphonitrile structure in HATA molecular for EP.
环三唑膦衍生物的取代结构对其阻燃效果有很大影响。一种带有三唑基团的环三唑膦衍生物被称为六(1,2,4-三唑-3-基胺)环三唑膦(HATA),它被用来提高环氧树脂(EP)的阻燃性。差示扫描量热法、热重分析和动态机械分析被用来表征 EP/HATA 热固性材料的热性能。HATA 的三唑和仲胺结构促进了 EP 的固化。由于 HATA 具有刚性环磷腈结构,因此 EP/HATA 热固性塑料的成炭能力和储存模量都有所提高。由于加入了 5% 的 HATA 和 0.73 wt% 的磷,EP 通过了 UL-94 V-0 级认证。随后使用锥形量热仪进行的分析表明,添加 HATA 后,EP 的峰值放热率、火势增长速度和总产烟量明显降低。同时,EP 在燃烧过程中的产炭量也有显著提高,这表明其在防火安全性方面有明显改善。其他研究包括 X 射线光电子能谱、扫描电子显微镜、TG-傅立叶变换红外光谱和热解气相色谱/质谱,用于分析炭残留物和气体挥发物。结果表明,HATA 促进了 EP 中含有环磷腈结构的致密、连续和膨胀性炭层的形成。此外,HATA 的分解还释放出大量的含氮挥发物,有效缓解了气相 EP 基质中产生的可燃气体。该研究提出了一种双相阻燃作用模式,强调了用于 EP 的 HATA 分子中的三唑取代基和环膦腈结构之间的相互作用所产生的协同阻燃效果。
{"title":"Intramolecular cooperation and biphasic flame retardant mode of action: Effectiveness of hexa(1,2,4-triazol-3-ylamine) cyclotriphosphazene in epoxy resin","authors":"Yun-Fei He , Kai Ning , Cong-Yun Zhang , Zhu-Bao Shao , Bin Zhao","doi":"10.1016/j.aiepr.2024.03.003","DOIUrl":"10.1016/j.aiepr.2024.03.003","url":null,"abstract":"<div><p>The substitutional structure of cyclotriphosphazene derivatives significantly influences their flame-retardant effectiveness. A cyclotriphosphazene derivative with triazole group, referred to as hexa(1,2,4-triazol-3-ylamine) cyclotriphosphazene (HATA), was utilized to improve the flame retardancy of epoxy resin (EP). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were employed to characterize the thermal properties of EP/HATA thermosets. HATA facilitated the curing of EP due to its triazole and secondary amine structure. EP/HATA thermosets exhibited improved char-forming ability and storage modulus, attributed to the rigid cyclophosphonitrile structure of HATA. As a result of incorporating 5% HATA with 0.73 wt% phosphorus, EP passed UL-94 V-0 level. Subsequent analysis using a cone calorimeter revealed obvious reductions in the peak heat release rate, fire growth rate, and total smoke production of EP with the addition of HATA. Simultaneously, there was a significant enhancement in the char yield of EP during combustion, indicating notable improvements in fire safety. Additional investigations, including X-ray photoelectron spectroscopy, scanning electron microscopy, TG-FTIR, and pyrolysis gas chromatography/mass spectrometry, were employed to analyze the char residue and gaseous volatiles. HATA promoted the formation of a dense, continuous, and intumescent char layer containing cyclophosphonitrile structure in EP. Moreover, the decomposition of HATA released a notable quantity of nitrogen-containing volatiles, effectively mitigating flammable gases originating from the EP matrix in gaseous phase. A biphasic flame-retardant mode of action was proposed, underscoring cooperative flame-retardant effects arising from the interaction between triazole substituents and cyclophosphonitrile structure in HATA molecular for EP.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 326-337"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000137/pdfft?md5=ed55d6dd020a1f7058d231289438e2f9&pid=1-s2.0-S2542504824000137-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2022.12.006
Guang-Zhong Yin , Mei-Hui Zhou , María Fernanda Acosta , Pedro Rincón Arévalo
Polyethylene Glycol (PEG)-based flexible phase change materials have broad and practical application value in thermal management of flexible electronic devices. Considering the typical application cases and safety of phase change materials (PCMs), in this work, we grafted molecular nanoparticles, POSS, with both hydrophobic and flame retardant functions to the surface of PLR sheets through amidation reaction. The successful grafting of POSS has been fully verified by Fourier-transform infrared spectroscopy, energy dispersive spectroscopy and surface contact angle. The formation of the cross-linked structure and the introduction of POSS make the phase change latent heat of the phase change material slightly decrease from 102.4 J g−1 to 94.4 J g−1, but there is still a high retention rate. It is worth pointing out that the PCMs have excellent shape stability and leakage resistance, cycle stability, and shape memory performance (Rf-99%, Rr-99%). The introduce of cross-linked structure and POSS significantly enhanced the Young’s modulus and tensile strength of the PCM. The surface POSS functionalization endowed the PCM with significantly enhanced hydrophobicity. Specifically, the contact angle of the material was significantly increased from 71° for PLR to 123° for POSS-PLR, and it also had enhanced fire safety with pHRR reduction by 18.4% and THR reduction by 19.1%.
{"title":"Surface grafting POSS to improve the hydrophobicity and fire safety of polyrotaxane based smart phase change materials","authors":"Guang-Zhong Yin , Mei-Hui Zhou , María Fernanda Acosta , Pedro Rincón Arévalo","doi":"10.1016/j.aiepr.2022.12.006","DOIUrl":"10.1016/j.aiepr.2022.12.006","url":null,"abstract":"<div><p>Polyethylene Glycol (PEG)-based flexible phase change materials have broad and practical application value in thermal management of flexible electronic devices. Considering the typical application cases and safety of phase change materials (PCMs), in this work, we grafted molecular nanoparticles, POSS, with both hydrophobic and flame retardant functions to the surface of PLR sheets through amidation reaction. The successful grafting of POSS has been fully verified by Fourier-transform infrared spectroscopy, energy dispersive spectroscopy and surface contact angle. The formation of the cross-linked structure and the introduction of POSS make the phase change latent heat of the phase change material slightly decrease from 102.4 J g<sup>−1</sup> to 94.4 J g<sup>−1</sup>, but there is still a high retention rate. It is worth pointing out that the PCMs have excellent shape stability and leakage resistance, cycle stability, and shape memory performance (R<sub>f</sub>-99%, R<sub>r</sub>-99%). The introduce of cross-linked structure and POSS significantly enhanced the Young’s modulus and tensile strength of the PCM. The surface POSS functionalization endowed the PCM with significantly enhanced hydrophobicity. Specifically, the contact angle of the material was significantly increased from 71° for PLR to 123° for POSS-PLR, and it also had enhanced fire safety with pHRR reduction by 18.4% and THR reduction by 19.1%.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 318-325"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504822000586/pdfft?md5=8e4f655cfbdbdfbde7a1f761190a1c45&pid=1-s2.0-S2542504822000586-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47721139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aiepr.2024.03.002
Yu Zhang , Xiaowei Zhao , Xiaohong Li , Zhijun Zhang , Zhiwei Li
To address the shortcomings of traditional intumescent flame retardants (IFRs), a novel four-in-one IFR (M [APP/NiCo2O4]) was constructed for the first time. It integrates acid source, gas source, carbon source (crosslinking β-CD), and synergistic agent (NiCo2O4 nanoparticles) into a single entity by a co-encapsulation technology. Under the loading of 20 wt%, its flame retardant performance was significantly better than that of simple mixed flame retardants, and it could increase the limiting oxygen index of polypropylene (PP) from 18 to 30.2 and pass the UL-94 V-0 rating. At the same time, it could reduce the peak of heat release rate, total heat release, and peak of CO production of PP by 77%, 22%, and 80%, respectively, showing excellent flame retardant performance. The excellent flame retardant performance is mainly because the synergist NiCo2O4 nanoparticles in the four-in-one flame retardant can easily combine and efficiently interact with the acid source, carbon source, and gas source in the intumescent flame retardant to form a more stable protective char residue. In addition, the crosslinking β-CD shell enhances both the water resistance and initial thermal decomposition temperature of PP containing the four-in-one IFR compared to PP with simple mixed control samples. After 72 h of water resistance test, it can still maintain the UL-94 V-0 rating. The presence of the crosslinking β-CD shell also improves the compatibility of the four-in-one flame retardant in PP, and its adverse effects on the mechanical properties of PP are also significantly smaller than those of the mixed control sample.
{"title":"Novel four-in-one intumescent flame retardants for polypropylene: Synthesis, characterization and properties","authors":"Yu Zhang , Xiaowei Zhao , Xiaohong Li , Zhijun Zhang , Zhiwei Li","doi":"10.1016/j.aiepr.2024.03.002","DOIUrl":"10.1016/j.aiepr.2024.03.002","url":null,"abstract":"<div><p>To address the shortcomings of traditional intumescent flame retardants (IFRs), a novel four-in-one IFR (M [APP/NiCo<sub>2</sub>O<sub>4</sub>]) was constructed for the first time. It integrates acid source, gas source, carbon source (crosslinking β-CD), and synergistic agent (NiCo<sub>2</sub>O<sub>4</sub> nanoparticles) into a single entity by a co-encapsulation technology. Under the loading of 20 wt%, its flame retardant performance was significantly better than that of simple mixed flame retardants, and it could increase the limiting oxygen index of polypropylene (PP) from 18 to 30.2 and pass the UL-94 V-0 rating. At the same time, it could reduce the peak of heat release rate, total heat release, and peak of CO production of PP by 77%, 22%, and 80%, respectively, showing excellent flame retardant performance. The excellent flame retardant performance is mainly because the synergist NiCo<sub>2</sub>O<sub>4</sub> nanoparticles in the four-in-one flame retardant can easily combine and efficiently interact with the acid source, carbon source, and gas source in the intumescent flame retardant to form a more stable protective char residue. In addition, the crosslinking β-CD shell enhances both the water resistance and initial thermal decomposition temperature of PP containing the four-in-one IFR compared to PP with simple mixed control samples. After 72 h of water resistance test, it can still maintain the UL-94 V-0 rating. The presence of the crosslinking β-CD shell also improves the compatibility of the four-in-one flame retardant in PP, and its adverse effects on the mechanical properties of PP are also significantly smaller than those of the mixed control sample.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 3","pages":"Pages 309-317"},"PeriodicalIF":9.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504824000125/pdfft?md5=5c88b790f366d7d8265036e8f0700d64&pid=1-s2.0-S2542504824000125-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140405269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.aiepr.2023.12.001
Ans Al Rashid, Shoukat Alim Khan, Muammer Koç
Understanding the external and internal factors during an additive manufacturing (AM) process is crucial, as they can significantly affect the final product's performance. Efforts have been made to unwind the product, process, property, and performance (PPPP) relationships. The conventional experimental approaches can lead to boundless runs, resulting in exorbitant costs for research and development. Hence, developing, adapting, and validating numerical models is essential to achieving the desired performance of 3D-printed products with lesser resource utilization. In this study, numerical and experimental techniques were used to perform the PPPP relationship assessment on material extrusion 3D-printed parts. Three infill designs (rectangular, triangular, and hexagonal), with layer heights (0.1 mm, 0.125 mm, and 0.2 mm), and three different materials (carbon fiber-reinforced polyamide-6 (PA6-CF), polyamide-6 (PA6), and acrylonitrile butadiene styrene (ABS)), were selected for the investigation. Taguchi's design of experiments (DOE) method was used to limit the number of numerical simulations and experimental runs. A thermomechanical numerical model was utilized to perform the material extrusion process simulations and mechanical performance prediction of the specimens. Subsequently, the samples were 3D-printed and tested mechanically to validate the numerical simulation results. The dimensional, distortion, and mechanical analysis performed on numerical simulation results agreed well with the experimental observations.
了解增材制造(AM)过程中的外部和内部因素至关重要,因为它们会极大地影响最终产品的性能。人们一直在努力理清产品、工艺、属性和性能(PPPP)之间的关系。传统的实验方法可能会导致无限制的运行,从而导致高昂的研发成本。因此,开发、调整和验证数值模型对于以较少的资源利用率实现 3D 打印产品的理想性能至关重要。本研究采用数值和实验技术对材料挤压 3D 打印部件进行 PPPP 关系评估。研究选择了三种填充设计(矩形、三角形和六边形)、层高(0.1 毫米、0.125 毫米和 0.2 毫米)和三种不同材料(碳纤维增强聚酰胺-6(PA6-CF)、聚酰胺-6(PA6)和丙烯腈-丁二烯-苯乙烯(ABS))。采用田口试验设计法(DOE)限制了数值模拟和试验运行的次数。利用热力学数值模型对材料挤压过程进行模拟,并对试样的机械性能进行预测。随后,对试样进行了 3D 打印和机械测试,以验证数值模拟结果。根据数值模拟结果进行的尺寸、变形和机械分析与实验观察结果一致。
{"title":"Product, process, property, and performance (PPPP) relationship of 3D-Printed polymers and polymer composites: Numerical and experimental analysis","authors":"Ans Al Rashid, Shoukat Alim Khan, Muammer Koç","doi":"10.1016/j.aiepr.2023.12.001","DOIUrl":"10.1016/j.aiepr.2023.12.001","url":null,"abstract":"<div><p>Understanding the external and internal factors during an additive manufacturing (AM) process is crucial, as they can significantly affect the final product's performance. Efforts have been made to unwind the product, process, property, and performance (PPPP) relationships. The conventional experimental approaches can lead to boundless runs, resulting in exorbitant costs for research and development. Hence, developing, adapting, and validating numerical models is essential to achieving the desired performance of 3D-printed products with lesser resource utilization. In this study, numerical and experimental techniques were used to perform the PPPP relationship assessment on material extrusion 3D-printed parts. Three infill designs (rectangular, triangular, and hexagonal), with layer heights (0.1 mm, 0.125 mm, and 0.2 mm), and three different materials (carbon fiber-reinforced polyamide-6 (PA6-CF), polyamide-6 (PA6), and acrylonitrile butadiene styrene (ABS)), were selected for the investigation. Taguchi's design of experiments (DOE) method was used to limit the number of numerical simulations and experimental runs. A thermomechanical numerical model was utilized to perform the material extrusion process simulations and mechanical performance prediction of the specimens. Subsequently, the samples were 3D-printed and tested mechanically to validate the numerical simulation results. The dimensional, distortion, and mechanical analysis performed on numerical simulation results agreed well with the experimental observations.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 2","pages":"Pages 245-254"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000751/pdfft?md5=5d523b7c53007b735720b50d9fbd9a05&pid=1-s2.0-S2542504823000751-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.aiepr.2023.11.001
David Viljoen , Johan Labuschagné , Ines Kuehnert
A bimodal impact strength distribution was found in notched impact specimens of HDPE composites with calcium carbonate, carbon black, SEBS and stabilisers. The bimodal distribution was only found at moderate-to-high calcium carbonate loadings, with the likelihood of low impact strength increasing with increasing stabiliser loading and decreasing with increasing SEBS/CB masterbatch loading. Bayesian methods were used first to confirm bimodality and then to investigate the effects of formulation on the performance of the system, based on a hierarchical model with quadratic and interactive terms and switching based on the sampling of a Bernoulli distribution with a logistic regression informing the probability of high or low impact strength. The results are contextualised through micrograph fractography and, briefly, differential scanning calorimetry. Results are also reported for unnotched impact tests, with negative correlations for impact strength with calcium carbonate and stabilisers, a positive correlation with SEBS/CB and interactive effects.
{"title":"Bimodal impact strength distribution in HDPE composites: Formulational effects and Bayesian inference","authors":"David Viljoen , Johan Labuschagné , Ines Kuehnert","doi":"10.1016/j.aiepr.2023.11.001","DOIUrl":"10.1016/j.aiepr.2023.11.001","url":null,"abstract":"<div><p>A bimodal impact strength distribution was found in notched impact specimens of HDPE composites with calcium carbonate, carbon black, SEBS and stabilisers. The bimodal distribution was only found at moderate-to-high calcium carbonate loadings, with the likelihood of low impact strength increasing with increasing stabiliser loading and decreasing with increasing SEBS/CB masterbatch loading. Bayesian methods were used first to confirm bimodality and then to investigate the effects of formulation on the performance of the system, based on a hierarchical model with quadratic and interactive terms and switching based on the sampling of a Bernoulli distribution with a logistic regression informing the probability of high or low impact strength. The results are contextualised through micrograph fractography and, briefly, differential scanning calorimetry. Results are also reported for unnotched impact tests, with negative correlations for impact strength with calcium carbonate and stabilisers, a positive correlation with SEBS/CB and interactive effects.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 2","pages":"Pages 201-214"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000726/pdfft?md5=b7cfba8e32a94eb00a8d47cfff1ba5da&pid=1-s2.0-S2542504823000726-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139301542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}