How to incentive carbon capture and storage technology application in waste-to-energy industry: A facility-level integrated assessment of China

Kang Zhou , Jiayue Zhang , Mao Xu
{"title":"How to incentive carbon capture and storage technology application in waste-to-energy industry: A facility-level integrated assessment of China","authors":"Kang Zhou ,&nbsp;Jiayue Zhang ,&nbsp;Mao Xu","doi":"10.1016/j.ccst.2025.100364","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture and storage (CCS) technology is crucial for the waste-to-energy (WtE) industry to achieve deep decarbonization goals, especially in China. However, there is a lack of understanding of the potential and costs of CCS technology in the WtE industry, particularly from the perspective of facility. Given with this situation, a facility-level integrated assessment model including CCS source-sink matching optimization model and tech-economic assessment model was developed in this study to reveal the application potential and costs of CCS technology in China's WtE industry, and to quantify the impacts of different incentive policies on CCS technology deployment. The results showed that matching WtE facilities with nearby carbon sinks enables significant CO<sub>2</sub> reductions, ranging from 0.3 Gt annually to a cumulative 6.9 Gt over the facilities’ operational lifetimes. The emission reduction costs for all WtE facilities range from -612.9 to 506.5 CNY/t CO<sub>2</sub>, with an average profit of 412.5 CNY/t CO<sub>2</sub> when considering enhanced oil recovery (EOR). However, saline aquifer storage demands robust policy incentives due to limited direct economic benefits. Facilities with larger capacities and longer remaining lifespans are most cost-effective for CCS retrofitting. Spatial analysis underscores geographical disparities in CCS potential, with eastern coastal regions displaying greater feasibility due to higher WtE density and proximity to carbon sinks. Among incentive measures, waste disposal fee subsidies and feed-in tariffs exhibit varying efficiency, while carbon market mechanisms show potential for long-term sustainability. To promote the application of CCS technology and exert its emission reduction effect, a collaborative strategy combining market-driven carbon pricing and government subsidies should be adopted in the future, and priority should be given to the retrofitting of high-capacity and long-life facilities.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100364"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon capture and storage (CCS) technology is crucial for the waste-to-energy (WtE) industry to achieve deep decarbonization goals, especially in China. However, there is a lack of understanding of the potential and costs of CCS technology in the WtE industry, particularly from the perspective of facility. Given with this situation, a facility-level integrated assessment model including CCS source-sink matching optimization model and tech-economic assessment model was developed in this study to reveal the application potential and costs of CCS technology in China's WtE industry, and to quantify the impacts of different incentive policies on CCS technology deployment. The results showed that matching WtE facilities with nearby carbon sinks enables significant CO2 reductions, ranging from 0.3 Gt annually to a cumulative 6.9 Gt over the facilities’ operational lifetimes. The emission reduction costs for all WtE facilities range from -612.9 to 506.5 CNY/t CO2, with an average profit of 412.5 CNY/t CO2 when considering enhanced oil recovery (EOR). However, saline aquifer storage demands robust policy incentives due to limited direct economic benefits. Facilities with larger capacities and longer remaining lifespans are most cost-effective for CCS retrofitting. Spatial analysis underscores geographical disparities in CCS potential, with eastern coastal regions displaying greater feasibility due to higher WtE density and proximity to carbon sinks. Among incentive measures, waste disposal fee subsidies and feed-in tariffs exhibit varying efficiency, while carbon market mechanisms show potential for long-term sustainability. To promote the application of CCS technology and exert its emission reduction effect, a collaborative strategy combining market-driven carbon pricing and government subsidies should be adopted in the future, and priority should be given to the retrofitting of high-capacity and long-life facilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1