Fabrication of vertical structure type bimetallic MOF@ biomass aerogels for efficient CO2 capture and separation

Jianpeng Huang , Yongjuan Wang , Zhipeng Hu , Deshi Yang , Zhijun Zhang , Fengqiang Wang , Yanjun Xie , Qingwen Wang
{"title":"Fabrication of vertical structure type bimetallic MOF@ biomass aerogels for efficient CO2 capture and separation","authors":"Jianpeng Huang ,&nbsp;Yongjuan Wang ,&nbsp;Zhipeng Hu ,&nbsp;Deshi Yang ,&nbsp;Zhijun Zhang ,&nbsp;Fengqiang Wang ,&nbsp;Yanjun Xie ,&nbsp;Qingwen Wang","doi":"10.1016/j.ccst.2025.100362","DOIUrl":null,"url":null,"abstract":"<div><div>Effectively capturing carbon dioxide (CO<sub>2</sub>) is crucial for environmental protection. In this research, we synthesized a composite aerogel (CSA-n) by integrating a bimetallic metal-organic framework (Mg/Co-MOF-74) with biomass materials (cellulose/chitosan) using an in situ mineralization approach. This composite aerogel exhibited enhanced CO<sub>2</sub> adsorption capabilities than pure biomass aerogel. At 298 K and 100 KPa, the CO<sub>2</sub> adsorption capacity of CSA-3 reached 6.4 mmol/g, an increase of 16.4 % compared to pure MOF. The significant improvement of CO<sub>2</sub> uptakes could be attributed to the more complex pore structure of the composite aerogel compared to pure MOF. Additionally, simulations based on the ideal adsorption solution theory (IAST) showed that the separation factors of CSA-3 for CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> gas mixtures were 594.3 and 43.4, respectively. Furthermore, the composite aerogel exhibited excellent cyclic stability. After 10 cycles, the CO<sub>2</sub> adsorption capacity of CSA-3 remained at 96.8 %. The results suggest that this bimetallic metal-organic framework @biomass hybrid aerogel holds great potential for CO<sub>2</sub> adsorption and separation applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100362"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effectively capturing carbon dioxide (CO2) is crucial for environmental protection. In this research, we synthesized a composite aerogel (CSA-n) by integrating a bimetallic metal-organic framework (Mg/Co-MOF-74) with biomass materials (cellulose/chitosan) using an in situ mineralization approach. This composite aerogel exhibited enhanced CO2 adsorption capabilities than pure biomass aerogel. At 298 K and 100 KPa, the CO2 adsorption capacity of CSA-3 reached 6.4 mmol/g, an increase of 16.4 % compared to pure MOF. The significant improvement of CO2 uptakes could be attributed to the more complex pore structure of the composite aerogel compared to pure MOF. Additionally, simulations based on the ideal adsorption solution theory (IAST) showed that the separation factors of CSA-3 for CO2/N2 and CO2/CH4 gas mixtures were 594.3 and 43.4, respectively. Furthermore, the composite aerogel exhibited excellent cyclic stability. After 10 cycles, the CO2 adsorption capacity of CSA-3 remained at 96.8 %. The results suggest that this bimetallic metal-organic framework @biomass hybrid aerogel holds great potential for CO2 adsorption and separation applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1