High-resolution seismic tomography of the transition zone from normal to flat slab subduction in central Chile: Implications for volcanoes, plate coupling and flat subduction

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2025-02-01 DOI:10.1016/j.epsl.2024.119167
Lei Gao , Zixin Chen , Ying Liu , Haijiang Zhang , Jiashun Hu , Diana Comte , Francisco Hernán Ortega Culaciati
{"title":"High-resolution seismic tomography of the transition zone from normal to flat slab subduction in central Chile: Implications for volcanoes, plate coupling and flat subduction","authors":"Lei Gao ,&nbsp;Zixin Chen ,&nbsp;Ying Liu ,&nbsp;Haijiang Zhang ,&nbsp;Jiashun Hu ,&nbsp;Diana Comte ,&nbsp;Francisco Hernán Ortega Culaciati","doi":"10.1016/j.epsl.2024.119167","DOIUrl":null,"url":null,"abstract":"<div><div>To better understand factors controlling the distribution of volcanoes, plate coupling along the subducting plate interface, and the transition from normal to flat slab subduction, we have determined high-resolution Vp, Vs and Vp/Vs models in the central Chile subduction zone where normal slab subduction transits to flat slab subduction. In the study region spanning latitudes of 22° to 31°S, volcanoes to the north of latitude 25.5°S are underlaid by intensive intermediate-depth earthquakes, but those to the south are correlated with very few. Based on velocity features, we proposed that volcanoes to the north are likely caused by partial melting of mantle wedge by incorporation of fluids released during the dehydration reactions of various hydrous minerals in the slab that are responsible for inducing intermediate-depth earthquakes, while volcanoes to the south are likely caused by sub-slab hot materials migrating upwards through the tear or gap due to the transition from normal subduction to flat subduction. Along the plate surface constructed based on our inverted velocity models and relocated earthquakes, higher plate coupling is spatially correlated with lower Vp/Vs values and fewer earthquakes, whereas lower plate coupling is correlated with relatively higher Vp/Vs values and intensive small earthquakes. These features suggest that the plate coupling state is controlled by the existence of fluids along the plate interface, with high degree of fluids reducing plate coupling and causing the creep deformation. In the region where the flat slab subduction is evident, there exist apparent high velocity anomalies above the intraslab seismicity. This indicates that some buoyant materials such as oceanic plateaus, aseismic ridges and seamount chains that featured high velocity anomalies were subducted with the slab and caused the nominal flat subduction.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119167"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005995","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

To better understand factors controlling the distribution of volcanoes, plate coupling along the subducting plate interface, and the transition from normal to flat slab subduction, we have determined high-resolution Vp, Vs and Vp/Vs models in the central Chile subduction zone where normal slab subduction transits to flat slab subduction. In the study region spanning latitudes of 22° to 31°S, volcanoes to the north of latitude 25.5°S are underlaid by intensive intermediate-depth earthquakes, but those to the south are correlated with very few. Based on velocity features, we proposed that volcanoes to the north are likely caused by partial melting of mantle wedge by incorporation of fluids released during the dehydration reactions of various hydrous minerals in the slab that are responsible for inducing intermediate-depth earthquakes, while volcanoes to the south are likely caused by sub-slab hot materials migrating upwards through the tear or gap due to the transition from normal subduction to flat subduction. Along the plate surface constructed based on our inverted velocity models and relocated earthquakes, higher plate coupling is spatially correlated with lower Vp/Vs values and fewer earthquakes, whereas lower plate coupling is correlated with relatively higher Vp/Vs values and intensive small earthquakes. These features suggest that the plate coupling state is controlled by the existence of fluids along the plate interface, with high degree of fluids reducing plate coupling and causing the creep deformation. In the region where the flat slab subduction is evident, there exist apparent high velocity anomalies above the intraslab seismicity. This indicates that some buoyant materials such as oceanic plateaus, aseismic ridges and seamount chains that featured high velocity anomalies were subducted with the slab and caused the nominal flat subduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Unraveling the key factors controlling active faulting in Tertiary and Quaternary sequences Editorial Board The first Al-Cu-alloy-bearing unmelted micrometeorite suggests contributions from the disrupted ureilite protoplanet Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene Volatile loss history of the Moon from the copper isotopic compositions of mare basalts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1