How does the newly-formed drainage divide migrate after a river capture event?

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2025-02-01 DOI:10.1016/j.epsl.2024.119165
Shuang Bian , Xibin Tan , Andrew V. Zuza , Chao Zhou , Feng Shi , Yiduo Liu , Junfeng Gong
{"title":"How does the newly-formed drainage divide migrate after a river capture event?","authors":"Shuang Bian ,&nbsp;Xibin Tan ,&nbsp;Andrew V. Zuza ,&nbsp;Chao Zhou ,&nbsp;Feng Shi ,&nbsp;Yiduo Liu ,&nbsp;Junfeng Gong","doi":"10.1016/j.epsl.2024.119165","DOIUrl":null,"url":null,"abstract":"<div><div>Tectonic and climatic perturbations can drive drainage adjustment. A river capture event is usually a landmark shift in drainage evolution, which significantly changes the river network topology. Although these events can be identified through field observations and provenance analysis, reconstructing this evolution and pinpointing the capture timing remain challenging. Here, we provide a new way of determining capture timing via drainage divides, based on theory, numerical simulations, and two natural cases. Our theoretical studies show that the steady-state elevation of the captor and beheaded rivers will decrease and increase following a capture event, respectively. The newly-formed drainage divide that emerged between the beheaded river and capture point will have large cross-divide differences in steady-state elevation and erosion rate and thus migrates towards the beheaded-river side until reaching a new steady state (no cross-divide difference in steady-state elevation). Numerical simulations reproduce the characteristic phenomena of drainage-divide migration following capture events. We find that (1) the migration of newly-formed drainage divides after capture events may last for tens of millions of years, with the migration rate decreasing exponentially over time; (2) a larger captured area, higher uplift rate, or lower erosion coefficient may cause higher migration rate of the newly-formed drainage divide in the other same conditions. These insights from theoretical analysis and numerical simulations are further applied to the Dadu-Anning and Yarlung-Yigong capture events in the southeastern Tibet. We predict that the present Dadu-Anning drainage divide would further migrate ∼94–123 km southward to reach a steady state in tens of millions of years. The Yarlung-Yigong capture event occurred earlier, in the early-middle Cenozoic, because the newly-formed drainage divide has already reached a steady state.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119165"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005971","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tectonic and climatic perturbations can drive drainage adjustment. A river capture event is usually a landmark shift in drainage evolution, which significantly changes the river network topology. Although these events can be identified through field observations and provenance analysis, reconstructing this evolution and pinpointing the capture timing remain challenging. Here, we provide a new way of determining capture timing via drainage divides, based on theory, numerical simulations, and two natural cases. Our theoretical studies show that the steady-state elevation of the captor and beheaded rivers will decrease and increase following a capture event, respectively. The newly-formed drainage divide that emerged between the beheaded river and capture point will have large cross-divide differences in steady-state elevation and erosion rate and thus migrates towards the beheaded-river side until reaching a new steady state (no cross-divide difference in steady-state elevation). Numerical simulations reproduce the characteristic phenomena of drainage-divide migration following capture events. We find that (1) the migration of newly-formed drainage divides after capture events may last for tens of millions of years, with the migration rate decreasing exponentially over time; (2) a larger captured area, higher uplift rate, or lower erosion coefficient may cause higher migration rate of the newly-formed drainage divide in the other same conditions. These insights from theoretical analysis and numerical simulations are further applied to the Dadu-Anning and Yarlung-Yigong capture events in the southeastern Tibet. We predict that the present Dadu-Anning drainage divide would further migrate ∼94–123 km southward to reach a steady state in tens of millions of years. The Yarlung-Yigong capture event occurred earlier, in the early-middle Cenozoic, because the newly-formed drainage divide has already reached a steady state.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Unraveling the key factors controlling active faulting in Tertiary and Quaternary sequences Editorial Board The first Al-Cu-alloy-bearing unmelted micrometeorite suggests contributions from the disrupted ureilite protoplanet Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene Volatile loss history of the Moon from the copper isotopic compositions of mare basalts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1