Rheology of hydrous minerals in the subduction multisystem

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2025-02-01 DOI:10.1016/j.epsl.2024.119171
Charis M. Horn, Philip Skemer
{"title":"Rheology of hydrous minerals in the subduction multisystem","authors":"Charis M. Horn,&nbsp;Philip Skemer","doi":"10.1016/j.epsl.2024.119171","DOIUrl":null,"url":null,"abstract":"<div><div>The relatively low strength of the hydrous minerals has been theorized to play a role in the initiation of subduction through the feedbacks between faulting, hydration reactions, and rheological weakening. To further explore the behaviour of hydrous magnesium silicate minerals under the high stress conditions relevant to propagating faults, we performed nanoindentation tests on three serpentine species—lizardite, antigorite, and chrysotile—from room temperature up to their respective dehydration temperatures. While all serpentine minerals exhibit markedly lower indentation hardness than olivine under the same conditions (H<sub>ol</sub> = 13.1–14.9 GPa), we find that antigorite (H<sub>atg</sub> = 5.7–6.7 GPa) is almost a factor of three harder than lizardite (H<sub>liz</sub> = 2.2–2.6 GPa), which is itself an order of magnitude harder than chrysotile (H<sub>ctl</sub> = 0.1 GPa). We also indented chlorite from room temperature up to 400 °C and found that it has a hardness between that of lizardite and antigorite (H<sub>chl</sub> = 2.8–4.0 GPa). Chrysotile is even weaker than the mineral talc (H<sub>tlc</sub> = 0.6 GPa), another hydrous magnesium silicate, which was tested in a previous study. The weakest hydrous magnesium silicates – talc and chrysotile – are approximately one order of magnitude weaker than antigorite and almost two orders of magnitude weaker than olivine. There is a systematic relationship between indentation hardness and the lattice spacing between c-planes in these sheet silicates. Geodynamic models of subduction initiation typically use an ad hoc finite yield stress to trigger localized deformation. This study confirms that hydrous magnesium silicates are a likely candidate for alteration products that can facilitate localized deformation both before and after subduction initiation. However, the degree of weakening is highly dependent on the specific reaction product.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119171"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24006034","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The relatively low strength of the hydrous minerals has been theorized to play a role in the initiation of subduction through the feedbacks between faulting, hydration reactions, and rheological weakening. To further explore the behaviour of hydrous magnesium silicate minerals under the high stress conditions relevant to propagating faults, we performed nanoindentation tests on three serpentine species—lizardite, antigorite, and chrysotile—from room temperature up to their respective dehydration temperatures. While all serpentine minerals exhibit markedly lower indentation hardness than olivine under the same conditions (Hol = 13.1–14.9 GPa), we find that antigorite (Hatg = 5.7–6.7 GPa) is almost a factor of three harder than lizardite (Hliz = 2.2–2.6 GPa), which is itself an order of magnitude harder than chrysotile (Hctl = 0.1 GPa). We also indented chlorite from room temperature up to 400 °C and found that it has a hardness between that of lizardite and antigorite (Hchl = 2.8–4.0 GPa). Chrysotile is even weaker than the mineral talc (Htlc = 0.6 GPa), another hydrous magnesium silicate, which was tested in a previous study. The weakest hydrous magnesium silicates – talc and chrysotile – are approximately one order of magnitude weaker than antigorite and almost two orders of magnitude weaker than olivine. There is a systematic relationship between indentation hardness and the lattice spacing between c-planes in these sheet silicates. Geodynamic models of subduction initiation typically use an ad hoc finite yield stress to trigger localized deformation. This study confirms that hydrous magnesium silicates are a likely candidate for alteration products that can facilitate localized deformation both before and after subduction initiation. However, the degree of weakening is highly dependent on the specific reaction product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Unraveling the key factors controlling active faulting in Tertiary and Quaternary sequences Editorial Board The first Al-Cu-alloy-bearing unmelted micrometeorite suggests contributions from the disrupted ureilite protoplanet Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene Volatile loss history of the Moon from the copper isotopic compositions of mare basalts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1