Ultramafic-influenced submarine venting on basaltic seafloor at the Polaris site, 87°N, Gakkel Ridge

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2025-02-01 DOI:10.1016/j.epsl.2024.119166
Elmar Albers , Alexander Diehl , Jessica N. Fitzsimmons , Laramie T. Jensen , Frieder Klein , Jill M. McDermott , Autun Purser , Jeffrey S. Seewald , Maren Walter , Gunter Wegener , Wolfgang Bach , Antje Boetius , Christopher R. German
{"title":"Ultramafic-influenced submarine venting on basaltic seafloor at the Polaris site, 87°N, Gakkel Ridge","authors":"Elmar Albers ,&nbsp;Alexander Diehl ,&nbsp;Jessica N. Fitzsimmons ,&nbsp;Laramie T. Jensen ,&nbsp;Frieder Klein ,&nbsp;Jill M. McDermott ,&nbsp;Autun Purser ,&nbsp;Jeffrey S. Seewald ,&nbsp;Maren Walter ,&nbsp;Gunter Wegener ,&nbsp;Wolfgang Bach ,&nbsp;Antje Boetius ,&nbsp;Christopher R. German","doi":"10.1016/j.epsl.2024.119166","DOIUrl":null,"url":null,"abstract":"<div><div>The nature of deep-sea hydrothermal systems is commonly inferred from physicochemical plume characteristics and seafloor observations, as was the case for the ‘Polaris’ site on the ultraslow-spreading Gakkel Ridge, Earth's northernmost hydrothermal system. Initial reports showing temperature and turbidity anomalies in its hydrothermal plume combined with its location on a neovolcanic axial seamount suggested a volcanically-hosted ‘black smoker’-type system. That interpretation, however, is inconsistent with our more complete data set derived from extensive water column sampling and seafloor surveys. The buoyant plume exhibits minor turbidity anomalies and low metal concentrations (dissolved Mn ≤ 3.1 nM), but contains substantial concentrations of H<sub>2</sub> (275 nM) and <sup>13</sup>C-enriched CH<sub>4</sub> (365 nM, δ<sup>13</sup>C = –13.2). Instead of a ‘black smoker’ vent field, we observed small-scale chimney structures at the seafloor. Together, these data imply intermediate-temperature reaction of hydrothermal fluids with ultramafic rock in the subseafloor before discharge through pillow basalt outcrops at the seafloor. Our study challenges the ability of established approaches to vent exploration, reliant exclusively on in situ sensing to reveal the full geodiversity of subseafloor hydrothermal venting. Ultramafic-influenced systems, releasing H<sub>2</sub> and CH<sub>4</sub> into the ocean, may be a recurring feature along the entire 25% of the global ridge system that is ultraslow-spreading.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119166"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005983","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nature of deep-sea hydrothermal systems is commonly inferred from physicochemical plume characteristics and seafloor observations, as was the case for the ‘Polaris’ site on the ultraslow-spreading Gakkel Ridge, Earth's northernmost hydrothermal system. Initial reports showing temperature and turbidity anomalies in its hydrothermal plume combined with its location on a neovolcanic axial seamount suggested a volcanically-hosted ‘black smoker’-type system. That interpretation, however, is inconsistent with our more complete data set derived from extensive water column sampling and seafloor surveys. The buoyant plume exhibits minor turbidity anomalies and low metal concentrations (dissolved Mn ≤ 3.1 nM), but contains substantial concentrations of H2 (275 nM) and 13C-enriched CH4 (365 nM, δ13C = –13.2). Instead of a ‘black smoker’ vent field, we observed small-scale chimney structures at the seafloor. Together, these data imply intermediate-temperature reaction of hydrothermal fluids with ultramafic rock in the subseafloor before discharge through pillow basalt outcrops at the seafloor. Our study challenges the ability of established approaches to vent exploration, reliant exclusively on in situ sensing to reveal the full geodiversity of subseafloor hydrothermal venting. Ultramafic-influenced systems, releasing H2 and CH4 into the ocean, may be a recurring feature along the entire 25% of the global ridge system that is ultraslow-spreading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Unraveling the key factors controlling active faulting in Tertiary and Quaternary sequences Editorial Board The first Al-Cu-alloy-bearing unmelted micrometeorite suggests contributions from the disrupted ureilite protoplanet Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene Volatile loss history of the Moon from the copper isotopic compositions of mare basalts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1