Selective adsorption of uranium(VI) by clay minerals from saline conditions: Molecular dynamics simulations

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2025-01-17 DOI:10.1016/j.chemphys.2025.112610
Sen Yang, Gang Yang
{"title":"Selective adsorption of uranium(VI) by clay minerals from saline conditions: Molecular dynamics simulations","authors":"Sen Yang,&nbsp;Gang Yang","doi":"10.1016/j.chemphys.2025.112610","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium represents one of the most radioactive and toxic metals. A systematic study of UO<sub>2</sub><sup>2+</sup> adsorption by clay minerals is conducted using molecular dynamics, especially from highly saline conditions where a majority of uranium is detected. UO<sub>2</sub><sup>2+</sup> adsorption and exchange occur favorably at basal rather than other surfaces. Clay minerals, especially beidellite, are UO<sub>2</sub><sup>2+</sup>-selective, and adsorption selectivity increases at higher salinity. Adsorption and selectivity are regulated by charge location and surface structure, and enhanced by temperature elevation, showing stronger coupling at higher UO<sub>2</sub><sup>2+</sup> concentrations. Co-existing metal ions affect UO<sub>2</sub><sup>2+</sup> adsorption more than anions, and thermodynamic preference of cation exchange follows as Ca<sup>2+</sup> &gt; K<sup>+</sup> &gt; Na<sup>+</sup> and CO<sub>3</sub><sup>2−</sup> &gt; Cl<sup>−</sup> while kinetic preference has reversed trends. Higher CO<sub>3</sub><sup>2−</sup> concentrations are necessary for coupling with Na<sup>+</sup> vs. Ca<sup>2+</sup>. Results promote the understanding of UO<sub>2</sub><sup>2+</sup> adsorption by clay materials, and are beneficial to uranium contamination management and nuclear fuels utilization.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"592 ","pages":"Article 112610"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000114","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium represents one of the most radioactive and toxic metals. A systematic study of UO22+ adsorption by clay minerals is conducted using molecular dynamics, especially from highly saline conditions where a majority of uranium is detected. UO22+ adsorption and exchange occur favorably at basal rather than other surfaces. Clay minerals, especially beidellite, are UO22+-selective, and adsorption selectivity increases at higher salinity. Adsorption and selectivity are regulated by charge location and surface structure, and enhanced by temperature elevation, showing stronger coupling at higher UO22+ concentrations. Co-existing metal ions affect UO22+ adsorption more than anions, and thermodynamic preference of cation exchange follows as Ca2+ > K+ > Na+ and CO32− > Cl while kinetic preference has reversed trends. Higher CO32− concentrations are necessary for coupling with Na+ vs. Ca2+. Results promote the understanding of UO22+ adsorption by clay materials, and are beneficial to uranium contamination management and nuclear fuels utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
High thermal insulation and optical conductivity of the 2D phase of MgX2 (X=Cl, Br, and I): A DFT and AIMD study Selective adsorption, structure and dynamics of CO2 – CH4 mixture in Mg-MOF-74 and the influence of intercrystalline disorder An Implementation of DMET-CCSD(T) in Water Clusters: Reduced Scaling and Quality of Relative Energies Interaction of lanthanum oxide and molten fluoride system FLiNaK: In situ Raman experiment and density functional theory simulations Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1