Catalytic mechanisms and metal ion specificity of class II fructose-1,6-bisphosphatases: A QM/MM study

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2025-03-15 DOI:10.1016/j.chemphys.2025.112704
Jian Wang, Lu Wang, Yinsi Ma, Xue-Ju Lv
{"title":"Catalytic mechanisms and metal ion specificity of class II fructose-1,6-bisphosphatases: A QM/MM study","authors":"Jian Wang,&nbsp;Lu Wang,&nbsp;Yinsi Ma,&nbsp;Xue-Ju Lv","doi":"10.1016/j.chemphys.2025.112704","DOIUrl":null,"url":null,"abstract":"<div><div>Class II Fructose-1,6-bisphosphatases (FBPaseII) play an essential role in gluconeogenesis of bacteria and exhibit conserved catalytic ability with their crucial threonine residue. The activity of FBPaseII is affected when the native metal ion cofactor is replaced. In this study, we developed the FBPaseII catalytic complex models for different species <em>Francisella tularensis</em> and <em>Mycobacterium tuberculosis,</em> with different divalent metal cation Mn<sup>2+</sup> and Mg<sup>2+</sup>. We simulated the two-step reaction using the Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) method. The results suggest that the Mg<sup>2+</sup> in FtFBPase and Mn<sup>2+</sup> in MtFBPase significantly increase the reaction barrier of FBPaseII, especially in the first step of the reaction. Additionally, we analyzed the stability of the metal ion and the behavior of the water molecules in the active site during the reaction. We propose that the metal ion in the active site plays a role in recruiting water molecules to the reaction center.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112704"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425001053","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Class II Fructose-1,6-bisphosphatases (FBPaseII) play an essential role in gluconeogenesis of bacteria and exhibit conserved catalytic ability with their crucial threonine residue. The activity of FBPaseII is affected when the native metal ion cofactor is replaced. In this study, we developed the FBPaseII catalytic complex models for different species Francisella tularensis and Mycobacterium tuberculosis, with different divalent metal cation Mn2+ and Mg2+. We simulated the two-step reaction using the Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) method. The results suggest that the Mg2+ in FtFBPase and Mn2+ in MtFBPase significantly increase the reaction barrier of FBPaseII, especially in the first step of the reaction. Additionally, we analyzed the stability of the metal ion and the behavior of the water molecules in the active site during the reaction. We propose that the metal ion in the active site plays a role in recruiting water molecules to the reaction center.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
First principle investigation of essential physical properties of stable Lead-free double perovskites Cs2AgAuX6 (X = cl, Br) for green energy applications Catalytic mechanisms and metal ion specificity of class II fructose-1,6-bisphosphatases: A QM/MM study First-principles study of the heavy metals adsorption on SnS2 and Janus monolayers Tailoring the electronic and optical properties of CsAuCl₃ via rare-earth doping: A GGA + U + SOC DFT study for phosphor-converted LEDs and advanced optoelectronic applications Explanations of the changes of dynamics at the liquid-liquid transition in phosphonium ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1