First-principles calculation of electronic, vibrational, and thermodynamic properties of 5-amino-3-hydrazinyl-1H-1,2,4-triazole-based energetic materials
Han-Ke Zhang , Qi-Jun Liu , Fu-Sheng Liu , Zheng-Tang Liu , Wen-Shuo Yuan
{"title":"First-principles calculation of electronic, vibrational, and thermodynamic properties of 5-amino-3-hydrazinyl-1H-1,2,4-triazole-based energetic materials","authors":"Han-Ke Zhang , Qi-Jun Liu , Fu-Sheng Liu , Zheng-Tang Liu , Wen-Shuo Yuan","doi":"10.1016/j.chemphys.2025.112605","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, nitrogen-rich energetic materials have attracted increasing attention due to their green and high-energy characteristics. It has been discovered that the overall properties of energetic ionic salts can be tuned by combining different cations and anions, as well as by introducing various functional groups. Therefore, research on nitrogen-rich energetic ionic materials is of great significance. In this study, the first-principles calculations were employed to investigate the newly constructed energetic ionic salt, 5-amino-3-hydrazinyl-1H-1,2,4-triazole. The electronic structure and vibrational properties of energetic salt 2 were calculated. The optimized lattice parameters obtained from our calculations are consistent with the literature data. The band structure and atomic projected density of states of energetic salt 2 were analyzed. Phonon dispersion curves and phonon density of states were plotted to analyze the phonon contributions. This study provides a reference for future research.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"592 ","pages":"Article 112605"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000060","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, nitrogen-rich energetic materials have attracted increasing attention due to their green and high-energy characteristics. It has been discovered that the overall properties of energetic ionic salts can be tuned by combining different cations and anions, as well as by introducing various functional groups. Therefore, research on nitrogen-rich energetic ionic materials is of great significance. In this study, the first-principles calculations were employed to investigate the newly constructed energetic ionic salt, 5-amino-3-hydrazinyl-1H-1,2,4-triazole. The electronic structure and vibrational properties of energetic salt 2 were calculated. The optimized lattice parameters obtained from our calculations are consistent with the literature data. The band structure and atomic projected density of states of energetic salt 2 were analyzed. Phonon dispersion curves and phonon density of states were plotted to analyze the phonon contributions. This study provides a reference for future research.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.