Sebastiano C. D'Angelo , Raul Calvo-Serrano , Jorge J. Gata-Cuesta , Philipp Steiner , Michael Bregy , Gonzalo Guillén-Gosálbez
{"title":"Sustainability and efficiency assessment of routes for long-term energy storage in chemicals","authors":"Sebastiano C. D'Angelo , Raul Calvo-Serrano , Jorge J. Gata-Cuesta , Philipp Steiner , Michael Bregy , Gonzalo Guillén-Gosálbez","doi":"10.1016/j.spc.2024.11.030","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable power plays a prominent role in the decarbonization of energy generation, particularly wind and solar energy sources. However, the intermittency of these renewable sources calls for energy storage, where hydrogen, ammonia, and methanol have emerged as potential chemical energy vectors. Such alternatives are often evaluated without modelling all the phases in detail of the storage process, i.e., (1) power-to-chemicals (P2C), (2) storage, and (3) chemicals-to-power (C2P), which can lead to limited insights. This work evaluates hydrogen, ammonia, and methanol as chemical energy vectors considering their economic and environmental performance using detailed simulations for all phases of the process based on harmonized assumptions and consistent datasets. Moreover, process simulation and life cycle assessment (LCA) are coupled with data envelopment analysis (DEA) to identify the most efficient alternatives and determine improvement targets for the inefficient ones. Hydrogen is found to have the lowest costs and environmental impacts, while methanol-based scenarios are moderately more expensive, and ammonia routes are the costliest. Furthermore, based on our modelling assumptions, methanol routes outperform ammonia routes in both economic and environmental terms. This work sheds light on the potential of chemical energy storage applications, and aims to open new avenues for holistic assessments of power generation and storage technologies under multiple sustainability and economic indicators.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"54 ","pages":"Pages 289-302"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003427","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable power plays a prominent role in the decarbonization of energy generation, particularly wind and solar energy sources. However, the intermittency of these renewable sources calls for energy storage, where hydrogen, ammonia, and methanol have emerged as potential chemical energy vectors. Such alternatives are often evaluated without modelling all the phases in detail of the storage process, i.e., (1) power-to-chemicals (P2C), (2) storage, and (3) chemicals-to-power (C2P), which can lead to limited insights. This work evaluates hydrogen, ammonia, and methanol as chemical energy vectors considering their economic and environmental performance using detailed simulations for all phases of the process based on harmonized assumptions and consistent datasets. Moreover, process simulation and life cycle assessment (LCA) are coupled with data envelopment analysis (DEA) to identify the most efficient alternatives and determine improvement targets for the inefficient ones. Hydrogen is found to have the lowest costs and environmental impacts, while methanol-based scenarios are moderately more expensive, and ammonia routes are the costliest. Furthermore, based on our modelling assumptions, methanol routes outperform ammonia routes in both economic and environmental terms. This work sheds light on the potential of chemical energy storage applications, and aims to open new avenues for holistic assessments of power generation and storage technologies under multiple sustainability and economic indicators.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.