Controlling tangential flow filtration in biomanufacturing processes via machine learning: A literature review

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2025-01-02 DOI:10.1016/j.dche.2024.100211
Bastian Oetomo , Ling Luo , Yiran Qu , Michele Discepola , Sandra E. Kentish , Sally L. Gras
{"title":"Controlling tangential flow filtration in biomanufacturing processes via machine learning: A literature review","authors":"Bastian Oetomo ,&nbsp;Ling Luo ,&nbsp;Yiran Qu ,&nbsp;Michele Discepola ,&nbsp;Sandra E. Kentish ,&nbsp;Sally L. Gras","doi":"10.1016/j.dche.2024.100211","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid growth of the biopharmaceutical sector in recent years, in conjunction with many recent successful developments in machine learning and artificial intelligence, the demand for the sector to shift to Industry 4.0 has emerged. Process Analytical Technology (PAT) makes it possible to monitor and control the manufacturing processes of monoclonal antibodies (mAbs), both in upstream and downstream processing. Despite downstream processing being responsible for approximately 60% of the cost of biological drug production, most of the recent developments focus on its upstream counterpart. This paper investigates existing literature on the application of machine learning and/or process control in downstream processing, with an emphasis on ultrafiltration/diafiltration (UF/DF) via tangential flow filtration (TFF). Literature on the intersection between control systems and machine learning will also be explored.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100211"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of the biopharmaceutical sector in recent years, in conjunction with many recent successful developments in machine learning and artificial intelligence, the demand for the sector to shift to Industry 4.0 has emerged. Process Analytical Technology (PAT) makes it possible to monitor and control the manufacturing processes of monoclonal antibodies (mAbs), both in upstream and downstream processing. Despite downstream processing being responsible for approximately 60% of the cost of biological drug production, most of the recent developments focus on its upstream counterpart. This paper investigates existing literature on the application of machine learning and/or process control in downstream processing, with an emphasis on ultrafiltration/diafiltration (UF/DF) via tangential flow filtration (TFF). Literature on the intersection between control systems and machine learning will also be explored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Hyperbox Mixture Regression for process performance prediction in antibody production Integration of artificial intelligence and advanced optimization techniques for continuous gas lift under restricted gas supply: A case study Bi-level data-driven enterprise-wide optimization with mixed-integer nonlinear scheduling problems Efficient data-driven predictive control of nonlinear systems: A review and perspectives APAH: An autonomous IoT driven real-time monitoring system for Industrial wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1