A case study into the safety management systems for the effects of potential space weather risks, for operators of very high altitude ‘near space’ flights from Mojave Air & Space Port, California, and the associated regulatory challenges

IF 1 Q3 ENGINEERING, AEROSPACE Journal of Space Safety Engineering Pub Date : 2024-12-01 DOI:10.1016/j.jsse.2024.08.010
C.T. Rees , J.R. Catchpole , A. Sewell , T. Reid , K.A. Ryden , S. Block , A. Mack
{"title":"A case study into the safety management systems for the effects of potential space weather risks, for operators of very high altitude ‘near space’ flights from Mojave Air & Space Port, California, and the associated regulatory challenges","authors":"C.T. Rees ,&nbsp;J.R. Catchpole ,&nbsp;A. Sewell ,&nbsp;T. Reid ,&nbsp;K.A. Ryden ,&nbsp;S. Block ,&nbsp;A. Mack","doi":"10.1016/j.jsse.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>Mojave Air &amp; Space Port is located in Mojave, California, United States. It is at an elevation of 2,801 feet (854 m), is nearly 3000 acres in size and has three runways. It is licensed by the FAA for horizontal launches of reusable spacecraft and is already a major hub for aerospace research and space enterprises, which includes potential space flights and very high altitude subsonic, supersonic, and hypersonic flights.</div><div>During potential very high-altitude ‘near space’ space flights, the effects of cosmic radiation exposure, especially during sudden changes in space weather, such as ground level enhancement (GLE) or solar particle events (SPEs), could have significant health implications for crew and passengers. This case study examines the intricate landscape of radiation risks, regulatory challenges, licensing complexities, and approaches to risk management for very high-altitude ‘near space’ space flights from Mojave Air and Space Port carrying one or more paying \"space flight participant\" (being an individual, who is not crew, carried aboard a launch vehicle or re-entry vehicle).</div><div>The study explores the specific challenges of risk assessment of very high-altitude flights, looking in detail at the risk posed by the space weather radiation environment in flight planning and execution, for both Space Port and flight operator. The study covers the ‘end to end’ licensing process and the regulatory considerations of space weather required for both Space Port and flight operator. Further, we look at the integration of Safety Management Systems (SMS), namely, we explore how SMS frameworks proactively identify, assess, and mitigate risks throughout the ‘near space’ space flight process. Further, the study presents a template for addressing the regulatory framework for flights, risk assessment, pre-flight briefings, and the flight licensing procedure.</div><div>This case study offers valuable insights for Space Port and flight operators, regulators, and policymakers, contributing to the development of comprehensive safety strategies, which are crucial for safe very high-altitude ‘near space’ space exploration.</div><div>Plain Language Summary: A case study of how the potential space weather risks can be successfully managed for very high altitude ‘near space’ subsonic, supersonic, and hypersonic flights from Mojave Air and Space Port, California, USA carrying one or more space flight participant(s).</div></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"11 4","pages":"Pages 710-720"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Mojave Air & Space Port is located in Mojave, California, United States. It is at an elevation of 2,801 feet (854 m), is nearly 3000 acres in size and has three runways. It is licensed by the FAA for horizontal launches of reusable spacecraft and is already a major hub for aerospace research and space enterprises, which includes potential space flights and very high altitude subsonic, supersonic, and hypersonic flights.
During potential very high-altitude ‘near space’ space flights, the effects of cosmic radiation exposure, especially during sudden changes in space weather, such as ground level enhancement (GLE) or solar particle events (SPEs), could have significant health implications for crew and passengers. This case study examines the intricate landscape of radiation risks, regulatory challenges, licensing complexities, and approaches to risk management for very high-altitude ‘near space’ space flights from Mojave Air and Space Port carrying one or more paying "space flight participant" (being an individual, who is not crew, carried aboard a launch vehicle or re-entry vehicle).
The study explores the specific challenges of risk assessment of very high-altitude flights, looking in detail at the risk posed by the space weather radiation environment in flight planning and execution, for both Space Port and flight operator. The study covers the ‘end to end’ licensing process and the regulatory considerations of space weather required for both Space Port and flight operator. Further, we look at the integration of Safety Management Systems (SMS), namely, we explore how SMS frameworks proactively identify, assess, and mitigate risks throughout the ‘near space’ space flight process. Further, the study presents a template for addressing the regulatory framework for flights, risk assessment, pre-flight briefings, and the flight licensing procedure.
This case study offers valuable insights for Space Port and flight operators, regulators, and policymakers, contributing to the development of comprehensive safety strategies, which are crucial for safe very high-altitude ‘near space’ space exploration.
Plain Language Summary: A case study of how the potential space weather risks can be successfully managed for very high altitude ‘near space’ subsonic, supersonic, and hypersonic flights from Mojave Air and Space Port, California, USA carrying one or more space flight participant(s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Space Safety Engineering
Journal of Space Safety Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.50
自引率
0.00%
发文量
80
期刊最新文献
Editorial Board Surveying space debris management methods: Revealing essential requirements for effective solutions Handling of external risks, including launch and re-entry events, in the aviation and maritime sector Design and development of a space suit mock-up for VR-based EVA research and simulation Collision avoidance in GEO: An operational approach to passive orbit determination for electric propulsion satellites via optical ground based observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1