Far-field ammonia gas sensing at room temperature with graphene nanoplatelets-infused PEDOT:PSS transparent thin film

IF 4.1 Q1 CHEMISTRY, ANALYTICAL Talanta Open Pub Date : 2024-12-10 DOI:10.1016/j.talo.2024.100389
Vinod K Ganesan , Chun Hui Tan , Pei Song Chee , Jen Hahn Low , Soon Poh Lee , Eng Hock Lim
{"title":"Far-field ammonia gas sensing at room temperature with graphene nanoplatelets-infused PEDOT:PSS transparent thin film","authors":"Vinod K Ganesan ,&nbsp;Chun Hui Tan ,&nbsp;Pei Song Chee ,&nbsp;Jen Hahn Low ,&nbsp;Soon Poh Lee ,&nbsp;Eng Hock Lim","doi":"10.1016/j.talo.2024.100389","DOIUrl":null,"url":null,"abstract":"<div><div>Amid the increasing demand for advanced gas sensing technologies, particularly for ammonia gas detection, this study presents an innovative solution for far-field sensing at room temperature. Widely used in various industrial applications, ammonia poses significant environmental and health risks, emphasizing the need for efficient monitoring. Although traditional gas sensing methods effective, they often constrained by high operating temperatures and complex electronic components, limiting their practicality. In response, transparent thin films have emerged as a promising alternative, offering real-time monitoring capabilities. However, existing transparent films often rely on external stimuli for activation, resulting in higher power consumption and degradation over time. This research investigates a transparent thin film composed of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) incorporated with graphene nanoplatelets (GNPs) for far-field ammonia gas sensing. Synthesized through a low-temperature, full-solution approach, the film demonstrates an average transmittance of 76.18 % in visible spectrum. Notably, patterning this film into a single slot antenna exhibits a significant 60 MHz frequency shift at a far-field distance of 12 cm when exposed to 50 ppm of ammonia gas. This significant frequency shift underscores the potential of the developed transparent slot antenna for practical and unobtrusive far-field sensing, advancing transparent gas sensors applications in environmental monitoring and workplace safety.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100389"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924001036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Amid the increasing demand for advanced gas sensing technologies, particularly for ammonia gas detection, this study presents an innovative solution for far-field sensing at room temperature. Widely used in various industrial applications, ammonia poses significant environmental and health risks, emphasizing the need for efficient monitoring. Although traditional gas sensing methods effective, they often constrained by high operating temperatures and complex electronic components, limiting their practicality. In response, transparent thin films have emerged as a promising alternative, offering real-time monitoring capabilities. However, existing transparent films often rely on external stimuli for activation, resulting in higher power consumption and degradation over time. This research investigates a transparent thin film composed of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) incorporated with graphene nanoplatelets (GNPs) for far-field ammonia gas sensing. Synthesized through a low-temperature, full-solution approach, the film demonstrates an average transmittance of 76.18 % in visible spectrum. Notably, patterning this film into a single slot antenna exhibits a significant 60 MHz frequency shift at a far-field distance of 12 cm when exposed to 50 ppm of ammonia gas. This significant frequency shift underscores the potential of the developed transparent slot antenna for practical and unobtrusive far-field sensing, advancing transparent gas sensors applications in environmental monitoring and workplace safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
期刊最新文献
Ultrafast microwave-assisted green synthesis of nitrogen-doped carbon dots as turn-off fluorescent nanosensors for determination of the anticancer nintedanib: Monitoring of environmental water samples On-site trihalomethanes extraction from water using 3D printing solid phase extraction device and analysis by GC-ECD Paper-based molecularly imprinted film designs for sensing human serum albumin High-performance room-temperature formic acid vapor sensors based on multi-walled carbon nanotubes/polypyrrole composites Nano-MIP based SPR sensor for tetracycline analysis in milk sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1