{"title":"Physical–chemical characterization of purified phenol red for spectrophotometric pH measurements in riverine, estuarine, and oceanic waters","authors":"Kalla L. Fleger, Robert H. Byrne, Xuewu Liu","doi":"10.1016/j.talo.2024.100380","DOIUrl":null,"url":null,"abstract":"<div><div>Phenol red (PR) is one of several sulfonephthalein indicators used to provide rapid and precise spectrophotometric pH measurements of seawater and similar solutions. With an approximate pH-indicating range of 5.9 to 7.7, this dye is well suited to fill a critical gap in spectrophotometric pH-measurement capabilities – e.g., the slightly acidic waters of environments low in oxygen or high in carbon dioxide. For highest-quality measurements, the salinity and temperature dependence of indicator behavior must be established, but previous characterizations of PR were for impure indicator powder or for low-salinity solutions only. This work is the first to comprehensively characterize purified phenol red over wide ranges of temperature (<em>T</em>; absolute temperature in K) and salinity (<em>S</em><sub>P</sub>; practical scale). Measurements of spectrophotometric pH<sub>T</sub> (total hydrogen ion concentration scale) are given by:<span><span><span><math><mrow><msub><mtext>pH</mtext><mi>T</mi></msub><mo>=</mo><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mn>2</mn><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><mtext>log</mtext><mrow><mo>(</mo><mrow><mo>(</mo><mi>R</mi><mo>−</mo><msub><mi>e</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>R</mi><msub><mi>e</mi><mn>4</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span></span></span>where <em>K</em><sub>2</sub><sup>T</sup> is the second dissociation constant of fully protonated PR, and <em>e</em><sub>1</sub>, <em>e</em><sub>2</sub>, and <em>e</em><sub>4</sub> are PR molar absorption coefficient ratios. The term <em>R</em> is the ratio of absorbances measured in the sample of interest at 558 and 433 nm. In this work, we derived a simplified method for determining the parameter <em>e</em><sub>1</sub> of any sulfonephthalein indicator and also fully characterized PR physical–chemical characteristics for 275.15 ≤ <em>T</em> ≤ 308.15 K and 0 ≤ <em>S</em><sub>P</sub> ≤ 40, yielding:<span><span><span><math><mtable><mtr><mtd><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>=</mo><mo>−</mo><mn>2.12261</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>+</mo><mn>1.37448</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mi>T</mi><mo>+</mo><mn>3.061</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>2</mn></msub><mo>=</mo><mn>3.6429426</mn><mo>−</mo><mn>2.8139</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mi>T</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>4</mn></msub><mo>=</mo><mn>8.0884775</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>6.2187</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>14.093126</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>5.005</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mrow><mn>2</mn></mrow><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>6.0900807</mn><mo>−</mo><mn>2.6700911</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mo>+</mo><mn>0.116252996</mn><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>2.5437592</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>1.5</mn></mrow></msubsup></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mn>3.0176155</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><mo>−</mo><mn>1.396307</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>2.5</mn></mrow></msubsup><mo>+</mo><mn>7802.66</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1.5</mn></mrow></msup><mo>+</mo><mn>0.7402604</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mtext>ln</mtext><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>−</mo><mn>0.110614654</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mrow><mn>0.5</mn></mrow></msup></mrow></mtd></mtr></mtable></math></span></span></span></div><div>To test the performance of this characterization, we measured pH at sea using both PR and meta-cresol purple (the standard indicator for measuring surface-to-deep open-ocean profiles) and found substantial agreement over the entire water column. The PR-based equation for measuring pH<sub>T</sub> can be combined with the parameterizations of other indicators to provide high-quality measurements over pH 4 to 9 for a wide range of solutions. This seamless continuity can be especially important in monitoring long-term change (e.g., ocean acidification) that may drive the pH of some waters of interest from the indicating range of one dye to another.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100380"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phenol red (PR) is one of several sulfonephthalein indicators used to provide rapid and precise spectrophotometric pH measurements of seawater and similar solutions. With an approximate pH-indicating range of 5.9 to 7.7, this dye is well suited to fill a critical gap in spectrophotometric pH-measurement capabilities – e.g., the slightly acidic waters of environments low in oxygen or high in carbon dioxide. For highest-quality measurements, the salinity and temperature dependence of indicator behavior must be established, but previous characterizations of PR were for impure indicator powder or for low-salinity solutions only. This work is the first to comprehensively characterize purified phenol red over wide ranges of temperature (T; absolute temperature in K) and salinity (SP; practical scale). Measurements of spectrophotometric pHT (total hydrogen ion concentration scale) are given by:where K2T is the second dissociation constant of fully protonated PR, and e1, e2, and e4 are PR molar absorption coefficient ratios. The term R is the ratio of absorbances measured in the sample of interest at 558 and 433 nm. In this work, we derived a simplified method for determining the parameter e1 of any sulfonephthalein indicator and also fully characterized PR physical–chemical characteristics for 275.15 ≤ T ≤ 308.15 K and 0 ≤ SP ≤ 40, yielding:
To test the performance of this characterization, we measured pH at sea using both PR and meta-cresol purple (the standard indicator for measuring surface-to-deep open-ocean profiles) and found substantial agreement over the entire water column. The PR-based equation for measuring pHT can be combined with the parameterizations of other indicators to provide high-quality measurements over pH 4 to 9 for a wide range of solutions. This seamless continuity can be especially important in monitoring long-term change (e.g., ocean acidification) that may drive the pH of some waters of interest from the indicating range of one dye to another.