Fiber-tip photonic crystal for real-time referenced biosensing in serum

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Biosensors and Bioelectronics: X Pub Date : 2024-12-27 DOI:10.1016/j.biosx.2024.100573
Mathias Dolci , Paco Dreverman , Mildred S. Cano-Velázquez , Arthur L. Hendriks , Emiel Veth , P.J. van Veldhoven , Andrea Fiore , Peter Zijlstra
{"title":"Fiber-tip photonic crystal for real-time referenced biosensing in serum","authors":"Mathias Dolci ,&nbsp;Paco Dreverman ,&nbsp;Mildred S. Cano-Velázquez ,&nbsp;Arthur L. Hendriks ,&nbsp;Emiel Veth ,&nbsp;P.J. van Veldhoven ,&nbsp;Andrea Fiore ,&nbsp;Peter Zijlstra","doi":"10.1016/j.biosx.2024.100573","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber optic sensors have become increasingly well-established due to the many advantages they provide such as immunity to electromagnetic interference, multiplexing capabilities, and remote sensing. The coupling of light with a transducer at the tip of the optical fiber enables the detection of physical and biological parameters. 2D photonic crystals (PhC) can be designed to feature guided-mode resonances (GMR) characterized by a strong electric field at the PhC surface, providing a suitable tool for the detection of local refractive index variations (e.g. biomolecule adsorption). Here, we demonstrate the use of a PhC transferred to the tip of a single-mode fiber for biosensing. The control of surface chemistry provides a sensitive platform for the molecular recognition of antibody biomarkers. By integrating the fiber in a continuous flow platform, the real-time detection of anti-IgG in undiluted serum was achieved, with a limit of detection down to 60 pM. Moreover, the use of a reference channel is demonstrated to correct for signal drifts in real-time due to changes in bulk refractive index. These referenced fiber-tip PhC biosensors may pave the way for fluidic integrated systems in environmental, industrial, and healthcare applications, and open up the possibility of biosensing in the human body by integrating them into catheters.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"22 ","pages":"Article 100573"},"PeriodicalIF":10.6100,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024001377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber optic sensors have become increasingly well-established due to the many advantages they provide such as immunity to electromagnetic interference, multiplexing capabilities, and remote sensing. The coupling of light with a transducer at the tip of the optical fiber enables the detection of physical and biological parameters. 2D photonic crystals (PhC) can be designed to feature guided-mode resonances (GMR) characterized by a strong electric field at the PhC surface, providing a suitable tool for the detection of local refractive index variations (e.g. biomolecule adsorption). Here, we demonstrate the use of a PhC transferred to the tip of a single-mode fiber for biosensing. The control of surface chemistry provides a sensitive platform for the molecular recognition of antibody biomarkers. By integrating the fiber in a continuous flow platform, the real-time detection of anti-IgG in undiluted serum was achieved, with a limit of detection down to 60 pM. Moreover, the use of a reference channel is demonstrated to correct for signal drifts in real-time due to changes in bulk refractive index. These referenced fiber-tip PhC biosensors may pave the way for fluidic integrated systems in environmental, industrial, and healthcare applications, and open up the possibility of biosensing in the human body by integrating them into catheters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
期刊最新文献
Cereals as sources of lysine in the reformulation of meat products. Evaluation using a biosensor Nanostructured immunosensing system for label-free impedimetric detection of multiple breast cancer biomarkers (CEA and HER2) using CoMoO4@PANI-PPy Nanocomposite Preparation and application of enzyme-based hydrogels Characterization of plant pathogenic bacteria at subspecies level using a dielectrophoresis device combined with Raman spectroscopy A deeper evaluation of cytokeratin fragment 21-1 as a lung cancer tumor marker and comparison of different assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1