How humans and machines identify discourse topics: A methodological triangulation

Mathew Gillings , Sylvia Jaworska
{"title":"How humans and machines identify discourse topics: A methodological triangulation","authors":"Mathew Gillings ,&nbsp;Sylvia Jaworska","doi":"10.1016/j.acorp.2025.100121","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying and exploring discursive topics in texts is of interest to not only linguists, but to researchers working across the full breadth of the social sciences. This paper reports on an exploratory study assessing the influence that analytical method has on the identification and labelling of topics, which might lead to varying interpretations of texts. Using a corpus of corporate sustainability reports, totalling 98,277 words, we asked 6 different researchers to interrogate the corpus and decide on its main ‘topics’ via four different methods: LLM-assisted analyses; topic modelling; concordance analysis; and close reading. These methods differ according to the amount of data that can be analysed at once, the amount of textual context available to the researcher, and the focus of the analysis (i.e., micro to macro). The paper explores how the identified topics differed both between analysts using the same method, and between methods. We conclude with a series of tentative observations regarding the benefits and limitations of each method, and offer recommendations for researchers in choosing which analytical technique to select.</div></div>","PeriodicalId":72254,"journal":{"name":"Applied Corpus Linguistics","volume":"5 1","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Corpus Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666799125000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying and exploring discursive topics in texts is of interest to not only linguists, but to researchers working across the full breadth of the social sciences. This paper reports on an exploratory study assessing the influence that analytical method has on the identification and labelling of topics, which might lead to varying interpretations of texts. Using a corpus of corporate sustainability reports, totalling 98,277 words, we asked 6 different researchers to interrogate the corpus and decide on its main ‘topics’ via four different methods: LLM-assisted analyses; topic modelling; concordance analysis; and close reading. These methods differ according to the amount of data that can be analysed at once, the amount of textual context available to the researcher, and the focus of the analysis (i.e., micro to macro). The paper explores how the identified topics differed both between analysts using the same method, and between methods. We conclude with a series of tentative observations regarding the benefits and limitations of each method, and offer recommendations for researchers in choosing which analytical technique to select.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Corpus Linguistics
Applied Corpus Linguistics Linguistics and Language
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
70 days
期刊最新文献
‘I am still unsure…’ – Spontaneous expressions of vaccine indecision on Mumsnet How humans and machines identify discourse topics: A methodological triangulation Anywhere but here: Discourses and representations surrounding same-sex marriage in Japanese newspapers Is LIWC reliable, efficient, and effective for the analysis of large online datasets in forensic and security contexts? The personal_relationship frame in love fraud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1