Band gap engineering of tungsten oxide-based nanomaterials

Karolina Syrek , Ewa Wierzbicka , Marta Zych , Daniel Piecha , Mateusz Szczerba , Monika Sołtys-Mróz , Joanna Kapusta-Kołodziej , Grzegorz D. Sulka
{"title":"Band gap engineering of tungsten oxide-based nanomaterials","authors":"Karolina Syrek ,&nbsp;Ewa Wierzbicka ,&nbsp;Marta Zych ,&nbsp;Daniel Piecha ,&nbsp;Mateusz Szczerba ,&nbsp;Monika Sołtys-Mróz ,&nbsp;Joanna Kapusta-Kołodziej ,&nbsp;Grzegorz D. Sulka","doi":"10.1016/j.jphotochemrev.2024.100681","DOIUrl":null,"url":null,"abstract":"<div><div>A band gap energy, a fundamental property of semiconductors, governs both their electrical and optical behaviors. When aiming to utilize semiconductors with tailored physical properties for specific applications, such as optoelectronic or photovoltaic devices, or as photoelectrodes in photoelectrochemical cells, there is often a need to adjust the energy band gap of the semiconductor. In this review, we have provided a comprehensive overview of various techniques employed for band gap determination. Noteworthy methods include UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) using the Tauc method, photoelectrochemical spectroscopy with external quantum efficiency measurements, spectroscopic ellipsometry (SE), photoluminescence (PL) spectroscopy, and photoacoustic (PA) spectroscopy. This article also offers an overview of extensive investigations undertaken to develop and characterize WO<sub>3</sub>-based nanomaterials with enhanced photoactive properties. Our exploration specifically delved into WO<sub>3</sub> nanomaterials doped with various elements, encompassing alkali metals, nonmetals, transition metals, noble metals, and lanthanides. The scrutiny involved a meticulous analysis of these nanomaterials, considering their morphology and properties, while taking into account the intricacies of the applied synthesis methods. Additionally, our focus extended to the determination of band gap values and the exploration of practical applications of these WO<sub>3</sub>-based nanomaterials, aiming to provide a comprehensive understanding of how these materials can be employed in diverse technological domains, from photovoltaics to catalysis and beyond. The multifaceted nature of WO<sub>3</sub>-based nanomaterials positions them as promising candidates for advanced applications, and our exploration seeks to contribute valuable insights into their potential functionalities and performance across various fields.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"62 ","pages":"Article 100681"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556724000315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A band gap energy, a fundamental property of semiconductors, governs both their electrical and optical behaviors. When aiming to utilize semiconductors with tailored physical properties for specific applications, such as optoelectronic or photovoltaic devices, or as photoelectrodes in photoelectrochemical cells, there is often a need to adjust the energy band gap of the semiconductor. In this review, we have provided a comprehensive overview of various techniques employed for band gap determination. Noteworthy methods include UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) using the Tauc method, photoelectrochemical spectroscopy with external quantum efficiency measurements, spectroscopic ellipsometry (SE), photoluminescence (PL) spectroscopy, and photoacoustic (PA) spectroscopy. This article also offers an overview of extensive investigations undertaken to develop and characterize WO3-based nanomaterials with enhanced photoactive properties. Our exploration specifically delved into WO3 nanomaterials doped with various elements, encompassing alkali metals, nonmetals, transition metals, noble metals, and lanthanides. The scrutiny involved a meticulous analysis of these nanomaterials, considering their morphology and properties, while taking into account the intricacies of the applied synthesis methods. Additionally, our focus extended to the determination of band gap values and the exploration of practical applications of these WO3-based nanomaterials, aiming to provide a comprehensive understanding of how these materials can be employed in diverse technological domains, from photovoltaics to catalysis and beyond. The multifaceted nature of WO3-based nanomaterials positions them as promising candidates for advanced applications, and our exploration seeks to contribute valuable insights into their potential functionalities and performance across various fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Organic photocatalysts for wastewater decontamination Editorial Board Band gap engineering of tungsten oxide-based nanomaterials Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1