首页 > 最新文献

Journal of Photochemistry and Photobiology C: Photochemistry Reviews最新文献

英文 中文
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy 用于生物医学成像、生物传感、给药和治疗的生物光子学和纳米机器人技术
IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-12 DOI: 10.1016/j.jphotochemrev.2024.100678
Bakr Ahmed Taha , Ali J. Addie , Ehsan M. Abbas , Bashar Hamad Aubaidan , Naser M. Ahmed , Adawiya J. Haider , Vishal Chaudhary , Norhana Arsad
Biophotonics-based nanorobotics is an important development in biomedical engineering. It combines light-based technology with tiny robotic devices to improve the treatment and diagnosis of diseases. This review explains the basic ideas of biophotonics and nanorobotics. It shows how important they are for delivering drugs directly to where they are needed, for treating cancer and for enabling tissue repair through better imaging techniques. In addition, light-driven nanorobots are increasingly being used in imaging and medical procedures. We also discuss the categorization of nanorobots based on their nanomaterials, functional mechanisms and potential biomedical programs. In addition, we address critical situations in biophotonic nanorobotics, such as biocompatibility, persistent motion within the frame, and self-sufficient navigation structures. Emerging answers that incorporate synthetic intelligence and the development of device-based knowledge can improve the performance and accuracy of nanorobots. Finally, we are looking at the potential of bioluminescence-assisted nanorobotics, manufacturing methods and recognition strategies for the future. We are also exploring the integration of innovative nanomaterials, enzymes and artificial intelligence (AI) for control and hybrid actuation, which promise minimally invasive nanoscale therapies for complex diseases in real time. These innovations put biophotonic nanorobotics at the forefront of biomedical research. They offer transformative solutions to unmet clinical needs and significantly advance our understanding of biological systems.
基于生物光子学的纳米机器人技术是生物医学工程领域的一项重要发展。它将基于光的技术与微小的机器人设备相结合,以改善疾病的治疗和诊断。本综述解释了生物光子学和纳米机器人学的基本思想。它说明了生物光子学和纳米机器人技术对于将药物直接输送到需要的地方、治疗癌症以及通过更好的成像技术实现组织修复有多么重要。此外,光驱动纳米机器人正越来越多地用于成像和医疗程序。我们还讨论了根据纳米材料、功能机制和潜在生物医学项目对纳米机器人进行分类的问题。此外,我们还讨论了生物光子纳米机器人的关键问题,如生物兼容性、框架内的持续运动和自给自足的导航结构。结合合成智能和基于设备的知识开发的新答案可以提高纳米机器人的性能和准确性。最后,我们正在研究生物发光辅助纳米机器人的潜力、制造方法和未来的识别策略。我们还在探索创新纳米材料、酶和人工智能(AI)在控制和混合驱动方面的整合,这有望为复杂疾病的实时微创纳米级疗法带来希望。这些创新将生物光子纳米机器人技术推向了生物医学研究的前沿。它们为尚未满足的临床需求提供了变革性的解决方案,并极大地推动了我们对生物系统的了解。
{"title":"Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy","authors":"Bakr Ahmed Taha ,&nbsp;Ali J. Addie ,&nbsp;Ehsan M. Abbas ,&nbsp;Bashar Hamad Aubaidan ,&nbsp;Naser M. Ahmed ,&nbsp;Adawiya J. Haider ,&nbsp;Vishal Chaudhary ,&nbsp;Norhana Arsad","doi":"10.1016/j.jphotochemrev.2024.100678","DOIUrl":"10.1016/j.jphotochemrev.2024.100678","url":null,"abstract":"<div><div>Biophotonics-based nanorobotics is an important development in biomedical engineering. It combines light-based technology with tiny robotic devices to improve the treatment and diagnosis of diseases. This review explains the basic ideas of biophotonics and nanorobotics. It shows how important they are for delivering drugs directly to where they are needed, for treating cancer and for enabling tissue repair through better imaging techniques. In addition, light-driven nanorobots are increasingly being used in imaging and medical procedures. We also discuss the categorization of nanorobots based on their nanomaterials, functional mechanisms and potential biomedical programs. In addition, we address critical situations in biophotonic nanorobotics, such as biocompatibility, persistent motion within the frame, and self-sufficient navigation structures. Emerging answers that incorporate synthetic intelligence and the development of device-based knowledge can improve the performance and accuracy of nanorobots. Finally, we are looking at the potential of bioluminescence-assisted nanorobotics, manufacturing methods and recognition strategies for the future. We are also exploring the integration of innovative nanomaterials, enzymes and artificial intelligence (AI) for control and hybrid actuation, which promise minimally invasive nanoscale therapies for complex diseases in real time. These innovations put biophotonic nanorobotics at the forefront of biomedical research. They offer transformative solutions to unmet clinical needs and significantly advance our understanding of biological systems.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"60 ","pages":"Article 100678"},"PeriodicalIF":12.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron doped nanomaterials for photocatalysis 用于光催化的掺硼纳米材料
IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-10 DOI: 10.1016/j.jphotochemrev.2024.100679
Meiyan Lin , Wanyu Qi , Haibo Zhang , Yuxin Li
Photocatalysis, by harnessing solar light to drive essential chemical transformations, is recognized for its transformative potential in sustainable energy production and environmental remediation, addressing critical global challenges such as CO2 reduction, water splitting, ammonia synthesis, etc. The development of novel photocatalytic composite materials is crucial, not only enhancing reaction efficiencies but also enabling more effective utilization of solar energy, thus propelling the field towards practical and scalable solutions. Among these materials, composites such as boron (B)-doped titanium dioxide, B-doped graphene, and B-doped carbon nitride are distinguished by their exceptional performance in various photocatalytic reactions. These enhancements are primarily attributed to the unique electronic structure of B, its small size and electron deficiency facilitate improved carrier detached and diminished regrouping rates, thereby expanding the spectrum of light absorption. Despite considerable advancements, the specific role of B within photocatalytic systems remains ambiguously defined, with ongoing research yet to conclusively determine whether B functions primarily as a catalyst (a key) or merely as a supportive enhancer (an auxiliary). Addressing this gap, this review adopts a novel analytical perspective, investigating the electron-deficient nature of B to elucidate it’s in photocatalysis distinct advantages, potential regimes, and practical applications. The review further delineates the current dilemmas and articulates future directions within the photocatalysis. By aiming to systematically characterize B's role in photocatalytic processes, this comprehensive review offers essential scientific and practical insights, pivotal for the development of more efficacious, innovative photocatalysts. Enhancing our understanding of the underlying mechanisms in photocatalytic reactions, this work substantially contributes to the achievement of sustainable development goals and establishes a foundation in this critical area for future.
光催化利用太阳光驱动基本的化学转化,在可持续能源生产和环境修复方面具有巨大的变革潜力,可解决二氧化碳减排、水分离、氨合成等重大全球性挑战。新型光催化复合材料的开发至关重要,不仅能提高反应效率,还能更有效地利用太阳能,从而推动该领域向实用和可扩展的解决方案发展。在这些材料中,掺硼二氧化钛、掺硼石墨烯和掺硼氮化碳等复合材料因其在各种光催化反应中的优异性能而独树一帜。这些性能的提高主要归功于掺硼元素独特的电子结构,掺硼元素的小尺寸和电子缺陷有助于提高载流子脱离率和降低重组率,从而扩大光吸收光谱。尽管取得了长足的进步,但 B 在光催化系统中的具体作用仍不明确,目前的研究尚未最终确定 B 的功能是主要作为催化剂(关键)还是仅仅作为支持性增强剂(辅助)。针对这一空白,本综述采用了新颖的分析视角,通过研究 B 的缺电子特性来阐明它在光催化中的独特优势、潜在机制和实际应用。这篇综述进一步划分了光催化目前的困境,并阐明了未来的发展方向。通过系统地描述 B 在光催化过程中的作用,这篇全面的综述提供了重要的科学和实践见解,对于开发更有效、更创新的光催化剂至关重要。这项研究加深了我们对光催化反应内在机理的理解,为实现可持续发展目标做出了重大贡献,并为这一关键领域的未来发展奠定了基础。
{"title":"Boron doped nanomaterials for photocatalysis","authors":"Meiyan Lin ,&nbsp;Wanyu Qi ,&nbsp;Haibo Zhang ,&nbsp;Yuxin Li","doi":"10.1016/j.jphotochemrev.2024.100679","DOIUrl":"10.1016/j.jphotochemrev.2024.100679","url":null,"abstract":"<div><div>Photocatalysis, by harnessing solar light to drive essential chemical transformations, is recognized for its transformative potential in sustainable energy production and environmental remediation, addressing critical global challenges such as CO<sub>2</sub> reduction, water splitting, ammonia synthesis, etc. The development of novel photocatalytic composite materials is crucial, not only enhancing reaction efficiencies but also enabling more effective utilization of solar energy, thus propelling the field towards practical and scalable solutions. Among these materials, composites such as boron (B)-doped titanium dioxide, B-doped graphene, and B-doped carbon nitride are distinguished by their exceptional performance in various photocatalytic reactions. These enhancements are primarily attributed to the unique electronic structure of B, its small size and electron deficiency facilitate improved carrier detached and diminished regrouping rates, thereby expanding the spectrum of light absorption. Despite considerable advancements, the specific role of B within photocatalytic systems remains ambiguously defined, with ongoing research yet to conclusively determine whether B functions primarily as a catalyst (a key) or merely as a supportive enhancer (an auxiliary). Addressing this gap, this review adopts a novel analytical perspective, investigating the electron-deficient nature of B to elucidate it’s in photocatalysis distinct advantages, potential regimes, and practical applications. The review further delineates the current dilemmas and articulates future directions within the photocatalysis. By aiming to systematically characterize B's role in photocatalytic processes, this comprehensive review offers essential scientific and practical insights, pivotal for the development of more efficacious, innovative photocatalysts. Enhancing our understanding of the underlying mechanisms in photocatalytic reactions, this work substantially contributes to the achievement of sustainable development goals and establishes a foundation in this critical area for future.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"60 ","pages":"Article 100679"},"PeriodicalIF":12.8,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs 光催化水分离反应:从半导体到 MOF 的途径
IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-10 DOI: 10.1016/j.jphotochemrev.2024.100680
Zahraa Abou Khalil , Raquel Del Angel , Georges Mouchaham , Christian Serre , Marco Daturi , Mohamad El-Roz
In light of the ever-growing global energy demand, photocatalytic water splitting has emerged as a promising avenue for sustainable and persistent energy sources. However, the quest for an optimal photocatalyst suitable for industrial-scale applications remains a strenuous challenge. The journey to identify the optimal photocatalyst for the water splitting reaction has been extensive and remains ongoing. While the search started with the use of inorganic semiconductors based on metal oxides, such as TiO2, many new and promising materials, such as Metal-Organic Frameworks (MOFs), have started to attract the attention of the scientific community. However, in order to be able to improve the efficiency of any photocatalyst, it is important to first understand how the reaction is taking place, in other words, it results imperative to understand the reaction mechanism. The aim of the following review is to study and analyze different experimental techniques that can be used for the elucidation of the reaction mechanism covering both water splitting’s half reactions: hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting (OWS). This work starts with the fundamentals of photocatalytic OWS under solar irradiation, followed by the systematical evaluation of distinct MOF-based photocatalysts, classifying them based on the specific metal ion in their composition which facilitates standardized comparisons. The mechanistic investigation of photocatalysts is then detailed, employing various spectroscopic techniques. While a higher focus has been given to the analysis of the mechanistic study on MOFs, other important photocatalysts counterparts are also explored, as they have helped to cement the bases in which new materials can be studied. Furthermore, by comparing results obtained for conventional photocatalysts (e.g., metal oxide semiconductors) with those obtained for newer materials like MOFs, we attempt to show the great amount of information that can be extracted for the elucidation of reaction mechanisms. This systematic approach aims to help better investigate the mechanistic study and designing the next generation of photocatalysts for HER, OER, and OWS.
鉴于全球能源需求的不断增长,光催化水分离技术已成为可持续和持久能源的一条大有可为的途径。然而,寻找适合工业规模应用的最佳光催化剂仍然是一项艰巨的挑战。寻找最佳光催化剂用于水分离反应的过程十分漫长,而且仍在继续。虽然这一探索始于使用基于金属氧化物的无机半导体,如二氧化钛,但许多新的、有前途的材料,如金属有机框架(MOFs),已开始吸引科学界的关注。然而,要想提高任何光催化剂的效率,首先必须了解反应是如何进行的,换句话说,必须了解反应机理。以下综述旨在研究和分析可用于阐明反应机理的不同实验技术,这些技术涵盖了水分离的两个半反应:氢进化反应(HER)、氧进化反应(OER)和整体水分离(OWS)。这项工作从太阳照射下光催化 OWS 的基本原理入手,随后对不同的基于 MOF 的光催化剂进行了系统评估,并根据其成分中的特定金属离子对其进行了分类,以便于进行标准化比较。然后,利用各种光谱技术详细介绍了光催化剂的机理研究。虽然重点分析了 MOFs 的机理研究,但也探讨了其他重要的光催化剂对应物,因为它们有助于巩固研究新材料的基础。此外,通过比较传统光催化剂(如金属氧化物半导体)和 MOFs 等新型材料的研究结果,我们试图展示在阐明反应机理方面可以提取的大量信息。这种系统化的方法旨在帮助更好地进行机理研究,并为 HER、OER 和 OWS 设计下一代光催化剂。
{"title":"Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs","authors":"Zahraa Abou Khalil ,&nbsp;Raquel Del Angel ,&nbsp;Georges Mouchaham ,&nbsp;Christian Serre ,&nbsp;Marco Daturi ,&nbsp;Mohamad El-Roz","doi":"10.1016/j.jphotochemrev.2024.100680","DOIUrl":"10.1016/j.jphotochemrev.2024.100680","url":null,"abstract":"<div><div>In light of the ever-growing global energy demand, photocatalytic water splitting has emerged as a promising avenue for sustainable and persistent energy sources. However, the quest for an optimal photocatalyst suitable for industrial-scale applications remains a strenuous challenge. The journey to identify the optimal photocatalyst for the water splitting reaction has been extensive and remains ongoing. While the search started with the use of inorganic semiconductors based on metal oxides, such as TiO<sub>2</sub>, many new and promising materials, such as Metal-Organic Frameworks (MOFs), have started to attract the attention of the scientific community. However, in order to be able to improve the efficiency of any photocatalyst, it is important to first understand how the reaction is taking place, in other words, it results imperative to understand the reaction mechanism. The aim of the following review is to study and analyze different experimental techniques that can be used for the elucidation of the reaction mechanism covering both water splitting’s half reactions: hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting (OWS). This work starts with the fundamentals of photocatalytic OWS under solar irradiation, followed by the systematical evaluation of distinct MOF-based photocatalysts, classifying them based on the specific metal ion in their composition which facilitates standardized comparisons. The mechanistic investigation of photocatalysts is then detailed, employing various spectroscopic techniques. While a higher focus has been given to the analysis of the mechanistic study on MOFs, other important photocatalysts counterparts are also explored, as they have helped to cement the bases in which new materials can be studied. Furthermore, by comparing results obtained for conventional photocatalysts (e.g., metal oxide semiconductors) with those obtained for newer materials like MOFs, we attempt to show the great amount of information that can be extracted for the elucidation of reaction mechanisms. This systematic approach aims to help better investigate the mechanistic study and designing the next generation of photocatalysts for HER, OER, and OWS.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"60 ","pages":"Article 100680"},"PeriodicalIF":12.8,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors 荧光含氟材料:应用于光动力疗法和设计化学传感器的新型材料
IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-01 DOI: 10.1016/j.jphotochemrev.2024.100677
Girish Chandra , Birkishore Mahto , Vijay Raj Singh , Gopal Kumar Mahato , Ujala Rani
Fluoro-organic compounds have been uninterruptedly shining since their inception in the scientific community. Their presence is indispensable in every corner of scientific research and application. Due to the inherent properties of fluorine atoms, fluorinated materials showed improved performance and higher stability. Further, perfluorinated hydrocarbons which contain many fluorinated atoms and roughly have ≥60 wt percent fluorine in the C(sp3)-F bond show interesting structural and photophysical properties. These are soluble in fluorous solvents, amphiphilic, exhibit non-polarizability, high gas content, and reduced molecular mobility, which makes them very special. As a result, these fluorous chemicals and solvents have been extensively used in a variety of fields. There is a continuous upsurge of interest and we have witnessed new research areas viz, catalysis, drug-delivery, imaging, photodynamic therapy, and chemical sensing. Due to self-aggregation properties, fluorous tagged molecules have been exploited in the production of nano and microstructures and thus open scope in different biological applications. Additionally, fluorous tags fluorophores dramatically change the photophysical properties and thus allow being used in chemical and biological sensing. Here, we have summarized the latest advancements in new fluorous materials, synthesis, photophysical properties, and emulsion formation for their use in photodynamic therapy and chemical sensing applications.
自诞生以来,氟有机化合物一直在科学界发光发热。科学研究和应用的每个角落都离不开它们的身影。由于氟原子的固有特性,含氟材料具有更好的性能和更高的稳定性。此外,全氟碳氢化合物含有许多氟化原子,C(sp3)-F 键中氟的重量百分比大致≥60%,具有有趣的结构和光物理特性。它们可溶于多氟溶剂,具有两亲性,表现出非极化性,气体含量高,分子流动性低,因此非常特别。因此,这些含氟化学品和溶剂已被广泛应用于各个领域。人们对它们的兴趣不断高涨,我们已经看到了催化、给药、成像、光动力疗法和化学传感等新的研究领域。由于具有自聚集特性,荧光标记分子已被用于生产纳米和微结构,从而为不同的生物应用开辟了空间。此外,荧光标签荧光团还能显著改变光物理特性,因此可用于化学和生物传感。在此,我们总结了新型荧光材料、合成、光物理性质和乳液形成方面的最新进展,以便将其用于光动力疗法和化学传感应用。
{"title":"Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors","authors":"Girish Chandra ,&nbsp;Birkishore Mahto ,&nbsp;Vijay Raj Singh ,&nbsp;Gopal Kumar Mahato ,&nbsp;Ujala Rani","doi":"10.1016/j.jphotochemrev.2024.100677","DOIUrl":"10.1016/j.jphotochemrev.2024.100677","url":null,"abstract":"<div><div>Fluoro-organic compounds have been uninterruptedly shining since their inception in the scientific community. Their presence is indispensable in every corner of scientific research and application. Due to the inherent properties of fluorine atoms, fluorinated materials showed improved performance and higher stability. Further, perfluorinated hydrocarbons which contain many fluorinated atoms and roughly have ≥60 wt percent fluorine in the C<sub>(sp</sub><sup>3</sup><sub>)</sub>-F bond show interesting structural and photophysical properties. These are soluble in fluorous solvents, amphiphilic, exhibit non-polarizability, high gas content, and reduced molecular mobility, which makes them very special. As a result, these fluorous chemicals and solvents have been extensively used in a variety of fields. There is a continuous upsurge of interest and we have witnessed new research areas <em>viz</em>, catalysis, drug-delivery, imaging, photodynamic therapy, and chemical sensing. Due to self-aggregation properties, fluorous tagged molecules have been exploited in the production of nano and microstructures and thus open scope in different biological applications. Additionally, fluorous tags fluorophores dramatically change the photophysical properties and thus allow being used in chemical and biological sensing. Here, we have summarized the latest advancements in new fluorous materials, synthesis, photophysical properties, and emulsion formation for their use in photodynamic therapy and chemical sensing applications.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"60 ","pages":"Article 100677"},"PeriodicalIF":12.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards red-NIR emission of platinum(II) complexes 铂(II)配合物的近红外发射
IF 13.6 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-01 DOI: 10.1016/j.jphotochemrev.2024.100664
Monika Wałęsa-Chorab

The exploration of near-infrared (NIR) emitting materials has been drawing great research interest due to their applications in many fields of technology and medicine. However, such materials usually exhibit low stability and low luminescence quantum yields, so there is still a great demand for the search new emitters that would overcome these limitations. Platinum(II) complexes have the ability to enter into metal-metal interactions, which leads to the formation of new excited states, such as metal-metal-ligand charge transfer (MMLCT), and are very promising NIR materials. It has been observed that the emission properties of Pt(II) complexes can be bathochromically shifted towards the NIR or red region using different approaches. This review summarizes methods for tuning the emission properties of Pt(II) complexes and shifting the emission towards the red and NIR regions of the electromagnetic spectrum.

近红外(NIR)发光材料在许多技术和医学领域都有应用,因此对它们的研究一直备受关注。然而,这类材料通常表现出稳定性低和发光量子产率低的特点,因此,人们仍然亟需寻找能克服这些局限性的新型发光体。铂(II)配合物能够进入金属-金属相互作用,从而形成新的激发态,如金属-金属-配体电荷转移(MMLCT),是非常有前途的近红外材料。据观察,Pt(II) 复合物的发射特性可以通过不同的方法向近红外或红色区域进行浴色偏移。本综述总结了调整铂(II)配合物发射特性并将其发射转向电磁波谱的红色和近红外区域的方法。
{"title":"Towards red-NIR emission of platinum(II) complexes","authors":"Monika Wałęsa-Chorab","doi":"10.1016/j.jphotochemrev.2024.100664","DOIUrl":"https://doi.org/10.1016/j.jphotochemrev.2024.100664","url":null,"abstract":"<div><p>The exploration of near-infrared (NIR) emitting materials has been drawing great research interest due to their applications in many fields of technology and medicine. However, such materials usually exhibit low stability and low luminescence quantum yields, so there is still a great demand for the search new emitters that would overcome these limitations. Platinum(II) complexes have the ability to enter into metal-metal interactions, which leads to the formation of new excited states, such as metal-metal-ligand charge transfer (MMLCT), and are very promising NIR materials. It has been observed that the emission properties of Pt(II) complexes can be bathochromically shifted towards the NIR or red region using different approaches. This review summarizes methods for tuning the emission properties of Pt(II) complexes and shifting the emission towards the red and NIR regions of the electromagnetic spectrum.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"59 ","pages":"Article 100664"},"PeriodicalIF":13.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389556724000145/pdfft?md5=566be66be9a7db414b9beab62cb76995&pid=1-s2.0-S1389556724000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141313269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer 用于癌症精准给药的光致发光纳米载体的进展与前景
IF 12.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-01 DOI: 10.1016/j.jphotochemrev.2024.100665
Neeraj S. Thakur , Nada Saleh , Ali Fahim Khan , Brototi Chakrabarty , Vibhuti Agrahari

Controlled drug delivery has profoundly impacted medicine by facilitating precise pharmacotherapy at targeted sites while mitigating adverse effects. Photoresponsive nanocarriers possessing light-mediated conformational changes enable on-demand cargo release with exquisite spatiotemporal precision. This approach enhances delivery efficacy, curtails toxicity, and bolsters patient outcomes. In this paper, we review the physicochemical attributes and applications of organic polymer-based nanoparticles, inorganic nanosystems, photosensitizing agents, and their composite nanomaterials for light-triggered drug delivery, with an emphasis on cancer therapeutics. Current preclinical advances, prospects, limitations, and the tremendous potential of photoresponsive nanomedicines aimed at malignant tumors are discussed through a critical appraisal of contemporary literature. In a nutshell, this review sheds light on an escalating technology poised to illuminate the future of precision drug delivery via localized, controlled release to cancerous tissue.

可控药物递送对医学产生了深远的影响,它有助于在目标部位进行精确的药物治疗,同时减轻不良反应。光致伸缩纳米载体具有光介导的构象变化,可实现按需释放药物,且时空精确度极高。这种方法可提高递送效果、降低毒性并改善患者预后。在本文中,我们回顾了基于有机聚合物的纳米颗粒、无机纳米系统、光敏剂及其复合纳米材料在光触发给药方面的理化特性和应用,重点是癌症治疗。通过对当代文献的批判性评估,讨论了针对恶性肿瘤的光敏纳米药物目前的临床前进展、前景、局限性和巨大潜力。总之,这篇综述揭示了一种不断升级的技术,它有望通过对癌症组织的局部控制释放,照亮精准给药的未来。
{"title":"Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer","authors":"Neeraj S. Thakur ,&nbsp;Nada Saleh ,&nbsp;Ali Fahim Khan ,&nbsp;Brototi Chakrabarty ,&nbsp;Vibhuti Agrahari","doi":"10.1016/j.jphotochemrev.2024.100665","DOIUrl":"10.1016/j.jphotochemrev.2024.100665","url":null,"abstract":"<div><p>Controlled drug delivery has profoundly impacted medicine by facilitating precise pharmacotherapy at targeted sites while mitigating adverse effects. Photoresponsive nanocarriers possessing light-mediated conformational changes enable on-demand cargo release with exquisite spatiotemporal precision. This approach enhances delivery efficacy, curtails toxicity, and bolsters patient outcomes. In this paper, we review the physicochemical attributes and applications of organic polymer-based nanoparticles, inorganic nanosystems, photosensitizing agents, and their composite nanomaterials for light-triggered drug delivery, with an emphasis on cancer therapeutics. Current preclinical advances, prospects, limitations, and the tremendous potential of photoresponsive nanomedicines aimed at malignant tumors are discussed through a critical appraisal of contemporary literature. In a nutshell, this review sheds light on an escalating technology poised to illuminate the future of precision drug delivery via localized, controlled release to cancerous tissue.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"59 ","pages":"Article 100665"},"PeriodicalIF":12.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The living light from fungi 来自真菌的生命之光
IF 13.6 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-03 DOI: 10.1016/j.jphotochemrev.2024.100654
Cassius V. Stevani , Caio K. Zamuner , Erick L. Bastos , Bianca B. de Nóbrega , Douglas M.M. Soares , Anderson G. Oliveira , Etelvino J.H. Bechara , Ekaterina S. Shakhova , Karen S. Sarkisyan , Ilia V. Yampolsky , Zinaida M. Kaskova

More than 125 known species of fungi, all part of the Agaricales order, can spontaneously emit light. This bioluminescence results from the oxidation of a luciferin derived from caffeic acid by oxygen under the action of the enzyme luciferase. The production and regeneration of caffeic acid tie together the Krebs cycle and the Shikimic Acid pathway in both fungi and plants. Therefore, successful genetic manipulation of luciferase has led to the development of bioluminescent reporters and eukaryotic organisms that exhibit self-sustained glow. This review aims to discuss the underlying mechanisms of fungal bioluminescence, with a focus on the biochemical and chemical processes that lead to light emission, along with an elaboration on its extensive biotechnological applications.

超过 125 种已知的真菌都属于姬松茸目,它们能够自发发光。这种生物发光是由咖啡酸产生的荧光素在荧光素酶的作用下被氧气氧化而产生的。咖啡酸的产生和再生将真菌和植物中的克雷布斯循环和莽草酸途径联系在一起。因此,对荧光素酶的成功遗传操作导致了生物发光报告物和真核生物体的发展,这些生物体表现出自我持续发光的特性。本综述旨在讨论真菌生物发光的基本机制,重点关注导致发光的生物化学和化学过程,并阐述其广泛的生物技术应用。
{"title":"The living light from fungi","authors":"Cassius V. Stevani ,&nbsp;Caio K. Zamuner ,&nbsp;Erick L. Bastos ,&nbsp;Bianca B. de Nóbrega ,&nbsp;Douglas M.M. Soares ,&nbsp;Anderson G. Oliveira ,&nbsp;Etelvino J.H. Bechara ,&nbsp;Ekaterina S. Shakhova ,&nbsp;Karen S. Sarkisyan ,&nbsp;Ilia V. Yampolsky ,&nbsp;Zinaida M. Kaskova","doi":"10.1016/j.jphotochemrev.2024.100654","DOIUrl":"10.1016/j.jphotochemrev.2024.100654","url":null,"abstract":"<div><p>More than 125 known species of fungi, all part of the Agaricales order, can spontaneously emit light. This bioluminescence results from the oxidation of a luciferin derived from caffeic acid by oxygen under the action of the enzyme luciferase. The production and regeneration of caffeic acid tie together the Krebs cycle and the Shikimic Acid pathway in both fungi and plants. Therefore, successful genetic manipulation of luciferase has led to the development of bioluminescent reporters and eukaryotic organisms that exhibit self-sustained glow. This review aims to discuss the underlying mechanisms of fungal bioluminescence, with a focus on the biochemical and chemical processes that lead to light emission, along with an elaboration on its extensive biotechnological applications.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"58 ","pages":"Article 100654"},"PeriodicalIF":13.6,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymers showing cluster triggered emission as potential materials in biophotonic applications 显示簇触发发射的聚合物是生物光子应用中的潜在材料
IF 13.6 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-01-24 DOI: 10.1016/j.jphotochemrev.2024.100653
Roger Bresolí-Obach , José A. Castro-Osma , Santi Nonell , Agustín Lara-Sánchez , Cristina Martín

The increasing number of infectious and chronic diseases, along with the rising healthcare demand caused by an aging population, has led the scientific community to seek novel diagnostic and therapeutic techniques that reduce both mortality rates and healthcare costs. Fluorescence-emission techniques, known for their high sensitivity, rapid response, real-time spatial-temporal resolution, and on-site capabilities, are emerging as key technologies in early diagnosis. However, the biocompatibility of fluorescence probes and their brightness in biological systems continue to be a bottleneck in realizing the full potential of this technique. To address this issue, researchers are turning to efficient luminescence based on through-space conjugation, which is achieved through the clustering of non-conventional chromophores. This review discusses the main recent findings on this phenomenon, analysing its emissive mechanism and how its characteristics can be applied in fields such as sensing, imaging, and various therapies, with a focus on its potential applications in biomedicine.

随着传染病和慢性病数量的不断增加,以及人口老龄化导致的医疗保健需求的不断增长,科学界开始寻求能够降低死亡率和医疗成本的新型诊断和治疗技术。荧光发射技术以其高灵敏度、快速反应、实时时空分辨率和现场功能而著称,正在成为早期诊断的关键技术。然而,荧光探针的生物兼容性及其在生物系统中的亮度仍然是充分发挥这一技术潜力的瓶颈。为了解决这个问题,研究人员正在转向基于通空共轭的高效发光技术,这种技术是通过非常规发色团的聚合来实现的。本综述讨论了有关这一现象的主要最新研究成果,分析了其发光机理以及如何将其特性应用于传感、成像和各种治疗等领域,重点关注其在生物医学中的潜在应用。
{"title":"Polymers showing cluster triggered emission as potential materials in biophotonic applications","authors":"Roger Bresolí-Obach ,&nbsp;José A. Castro-Osma ,&nbsp;Santi Nonell ,&nbsp;Agustín Lara-Sánchez ,&nbsp;Cristina Martín","doi":"10.1016/j.jphotochemrev.2024.100653","DOIUrl":"10.1016/j.jphotochemrev.2024.100653","url":null,"abstract":"<div><p>The increasing number of infectious and chronic diseases, along with the rising healthcare demand caused by an aging population, has led the scientific community to seek novel diagnostic<span> and therapeutic techniques that reduce both mortality rates and healthcare costs. Fluorescence-emission techniques, known for their high sensitivity, rapid response, real-time spatial-temporal resolution, and on-site capabilities, are emerging as key technologies in early diagnosis. However, the biocompatibility of fluorescence probes and their brightness in biological systems continue to be a bottleneck in realizing the full potential of this technique. To address this issue, researchers are turning to efficient luminescence based on through-space conjugation, which is achieved through the clustering of non-conventional chromophores. This review discusses the main recent findings on this phenomenon, analysing its emissive mechanism and how its characteristics can be applied in fields such as sensing, imaging, and various therapies, with a focus on its potential applications in biomedicine.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"58 ","pages":"Article 100653"},"PeriodicalIF":13.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and nanoparticulate agents for photodynamic therapy guided by near infrared imaging 通过近红外成像引导光动力疗法的分子和纳米颗粒制剂
IF 13.6 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-01-14 DOI: 10.1016/j.jphotochemrev.2024.100652
A. Grebinyk , O. Chepurna , M. Frohme , J. Qu , R. Patil , L.O. Vretik , T.Y. Ohulchanskyy

Photodynamic therapy (PDT) of cancer is a clinically approved, minimally invasive therapeutic approach, combining PDT drug (photosensitizer, PS), molecular oxygen and light to induce cytotoxicity via reactive oxygen species (ROS), which are generated by the light excited PS. Most of the PS molecules fluoresce under excitation with light and fluorescence imaging (FLI) can be employed to evaluate their biodistribution and assess the intratumoral delivery before the therapeutic light application. Light absorption can also be utilized to track a PS by photoacoustic imaging (PAI). However, an excitation of the PS during assessment of its biodistribution through FLI or PAI results in premature photobleaching and causes toxicity. An involvement of a separate fluorescent (luminescent) or photoacoustic imaging probe, which provides imaging contrast in combination with PS without excitation of the latter, can allow for “see-and-treat” approach with FLI/PAI guided PDT. On the other hand, it is well-known that near-infrared (NIR) light is able to penetrate relatively deeper in comparison with visible light, due to reduced absorption and scattering. In addition to the conventional NIR window (NIR-I, ∼700–950 nm), other transparency windows for biological tissues have recently been identified at ∼1000–1700 nm (NIR-II), benefiting optical bioimaging due to the reduced tissue scattering and autofluorescence. Multiple NIR-II imaging probes are currently introduced both for luminescence and photoacoustic bioimaging, providing the significantly improved signal to noise ratio (SNR), imaging depth and resolution. Their combinations with PS are also being increasingly reported, though no review on this hot topic currently exists. Herein, a state-of-the-art in NIR photoluminescence (including fluorescence) and photoacoustic imaging guided PDT is presented. NIR-I and NIR-II spectral ranges are considered, along with both molecular and nanoparticle formulations for imaging guided PDT. It is expected that this review will provide a solid foundation for future translational studies in the domain of NIR imaging guided photodynamic therapy and drug delivery.

癌症光动力疗法(PDT)是一种经临床批准的微创治疗方法,它结合了光动力疗法药物(光敏剂,PS)、分子氧和光,通过光激发 PS 产生的活性氧(ROS)产生细胞毒性。大多数 PS 分子在光的激发下会发出荧光,荧光成像(FLI)可用于评估它们的生物分布,并在应用治疗光之前评估瘤内输送情况。光吸收也可以通过光声成像(PAI)来追踪 PS。然而,在通过荧光成像或 PAI 评估 PS 的生物分布时,激发 PS 会导致过早的光漂白并引起中毒。如果使用单独的荧光(发光)或光声成像探针,在不激发 PS 的情况下与 PS 结合提供成像对比度,就可以在 FLI/PAI 引导下进行局部放疗,实现 "即看即治"。另一方面,众所周知,与可见光相比,近红外(NIR)光由于减少了吸收和散射,可以穿透得更深。除了传统的近红外窗口(NIR-I,约 700-950 纳米),最近还发现了约 1000-1700 纳米(NIR-II)的其他生物组织透明度窗口,由于组织散射和自发荧光减少,有利于光学生物成像。目前已推出多种 NIR-II 成像探针,用于发光和光声生物成像,显著提高了信噪比(SNR)、成像深度和分辨率。它们与 PS 结合使用的报道也越来越多,但目前还没有关于这一热门话题的综述。本文介绍了近红外光致发光(包括荧光)和光声成像引导的局部放疗的最新进展。研究考虑了近红外 I 和近红外 II 光谱范围,以及成像引导的局部放疗的分子和纳米粒子配方。预计本综述将为近红外成像引导的光动力疗法和给药领域未来的转化研究奠定坚实的基础。
{"title":"Molecular and nanoparticulate agents for photodynamic therapy guided by near infrared imaging","authors":"A. Grebinyk ,&nbsp;O. Chepurna ,&nbsp;M. Frohme ,&nbsp;J. Qu ,&nbsp;R. Patil ,&nbsp;L.O. Vretik ,&nbsp;T.Y. Ohulchanskyy","doi":"10.1016/j.jphotochemrev.2024.100652","DOIUrl":"10.1016/j.jphotochemrev.2024.100652","url":null,"abstract":"<div><p>Photodynamic therapy (PDT) of cancer is a clinically approved, minimally invasive therapeutic approach, combining PDT drug (photosensitizer, PS), molecular oxygen and light to induce cytotoxicity <em>via</em> reactive oxygen species (ROS), which are generated by the light excited PS. Most of the PS molecules fluoresce under excitation with light and fluorescence imaging (FLI) can be employed to evaluate their biodistribution and assess the intratumoral delivery before the therapeutic light application. Light absorption can also be utilized to track a PS by photoacoustic imaging (PAI). However, an excitation of the PS during assessment of its biodistribution through FLI or PAI results in premature photobleaching and causes toxicity. An involvement of a separate fluorescent (luminescent) or photoacoustic imaging probe, which provides imaging contrast in combination with PS without excitation of the latter, can allow for “see-and-treat” approach with FLI/PAI guided PDT. On the other hand, it is well-known that near-infrared (NIR) light is able to penetrate relatively deeper in comparison with visible light, due to reduced absorption and scattering. In addition to the conventional NIR window (NIR-I, ∼700–950 nm), other transparency windows for biological tissues have recently been identified at ∼1000–1700 nm (NIR-II), benefiting optical bioimaging due to the reduced tissue scattering and autofluorescence. Multiple NIR-II imaging probes are currently introduced both for luminescence and photoacoustic bioimaging, providing the significantly improved signal to noise ratio (SNR), imaging depth and resolution. Their combinations with PS are also being increasingly reported, though no review on this hot topic currently exists. Herein, a state-of-the-art in NIR photoluminescence (including fluorescence) and photoacoustic imaging guided PDT is presented. NIR-I and NIR-II spectral ranges are considered, along with both molecular and nanoparticle formulations for imaging guided PDT. It is expected that this review will provide a solid foundation for future translational studies in the domain of NIR imaging guided photodynamic therapy and drug delivery.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"58 ","pages":"Article 100652"},"PeriodicalIF":13.6,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry breaking charge transfer in excited multibranched molecules and dimers: A unified standpoint 激发的多分支分子和二聚体中对称性破坏的电荷转移:统一观点
IF 13.6 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-01-12 DOI: 10.1016/j.jphotochemrev.2024.100651
Anatoly I. Ivanov

Symmetry breaking charge transfer (SBCT) in excited molecules plays a central role in photochemical energy conversion in both artificial and biological systems. The photophysical properties of chromophore aggregates can be tuned over a wide range, which opens up prospects for their application in optoelectronic devices, as well as photosensitizers-catalysts. SBCT occurs at a high rate, so its use at the stage of primary charge separation can be effective in the development of organic photovoltaic devices. The processes of symmetry breaking in quadrupolar and octupolar molecules and symmetrical dimers are analyzed from a unified standpoint. The manifestations of symmetry breaking in the IR and optical spectra are described. The most important experimental results and their theoretical description within simple models are discussed. Particular attention is paid to the physical interpretation of regularities observed in experiments.

激发分子中的对称破缺电荷转移(SBCT)在人工和生物系统的光化学能量转换中发挥着核心作用。发色团聚集体的光物理性质可以在很大范围内进行调整,这为它们在光电设备以及光敏剂-催化剂中的应用开辟了前景。SBCT 的发生率很高,因此在初级电荷分离阶段使用 SBCT 可以有效地开发有机光电设备。从统一的角度分析了四极和八极分子以及对称二聚体的对称性破缺过程。描述了对称性破缺在红外光谱和光学光谱中的表现。讨论了最重要的实验结果及其在简单模型中的理论描述。特别关注实验中观察到的规律性的物理解释。
{"title":"Symmetry breaking charge transfer in excited multibranched molecules and dimers: A unified standpoint","authors":"Anatoly I. Ivanov","doi":"10.1016/j.jphotochemrev.2024.100651","DOIUrl":"10.1016/j.jphotochemrev.2024.100651","url":null,"abstract":"<div><p>Symmetry breaking charge transfer (SBCT) in excited molecules plays a central role in photochemical energy conversion in both artificial and biological systems. The photophysical properties of chromophore<span><span> aggregates can be tuned over a wide range, which opens up prospects for their application in optoelectronic devices, as well as photosensitizers-catalysts. SBCT occurs at a high rate, so its use at the stage of primary charge separation can be effective in the development of </span>organic photovoltaic devices. The processes of symmetry breaking in quadrupolar and octupolar molecules and symmetrical dimers are analyzed from a unified standpoint. The manifestations of symmetry breaking in the IR and optical spectra are described. The most important experimental results and their theoretical description within simple models are discussed. Particular attention is paid to the physical interpretation of regularities observed in experiments.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"58 ","pages":"Article 100651"},"PeriodicalIF":13.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Photochemistry and Photobiology C: Photochemistry Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1