Evolution of carbon fiber properties during repetitive recycling via pyrolysis and partial oxidation

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-01 DOI:10.1016/j.cartre.2024.100438
Marina Corvo Alguacil, Kentaro Umeki, Shujie You, Roberts Joffe
{"title":"Evolution of carbon fiber properties during repetitive recycling via pyrolysis and partial oxidation","authors":"Marina Corvo Alguacil,&nbsp;Kentaro Umeki,&nbsp;Shujie You,&nbsp;Roberts Joffe","doi":"10.1016/j.cartre.2024.100438","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of recycling carbon fiber reinforced polymers (CFRP) as a sustainable solution for waste management is yet to be fully understood. This study reports on the evolution of mechanical, and chemical properties of reclaimed carbon fibers when recycled multiple times via pyrolysis and partial oxidation. The performed work aims at filling the knowledge gap related to repetitive recycling when moving towards a circular flow of resources. A recycling process existing at industrial scale is used to ensure the relevance and usefulness of the results in the current industry scene. Two sets of three identical model composites are recycled using distinct recycling parameters, and their properties are characterized at the end of each recycling cycle. Results show that recycling can lead to an increase in stiffness but can have a negative impact on strength of recovered fibers. Mechanical behaviour shows recovered fibers suitable for secondary applications with medium performance requirements after two recycling cycles. The findings highlight the importance of understanding the material properties evolution during recycling processes. This research contributes to the development of sustainable waste management strategies and a more environmentally friendly future.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"18 ","pages":"Article 100438"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of recycling carbon fiber reinforced polymers (CFRP) as a sustainable solution for waste management is yet to be fully understood. This study reports on the evolution of mechanical, and chemical properties of reclaimed carbon fibers when recycled multiple times via pyrolysis and partial oxidation. The performed work aims at filling the knowledge gap related to repetitive recycling when moving towards a circular flow of resources. A recycling process existing at industrial scale is used to ensure the relevance and usefulness of the results in the current industry scene. Two sets of three identical model composites are recycled using distinct recycling parameters, and their properties are characterized at the end of each recycling cycle. Results show that recycling can lead to an increase in stiffness but can have a negative impact on strength of recovered fibers. Mechanical behaviour shows recovered fibers suitable for secondary applications with medium performance requirements after two recycling cycles. The findings highlight the importance of understanding the material properties evolution during recycling processes. This research contributes to the development of sustainable waste management strategies and a more environmentally friendly future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Comparative evaluation of cationic and anionic dye removal using graphene oxide fabricated by Hummers and Couette-Taylor flow methods Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1