Effect of fullerene ratio as an organic additive on the hydrogen storage of Se nanoparticles

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-01 DOI:10.1016/j.cartre.2024.100437
Ban D. Salih , Nora A. Salih , Maysoon A. Hamad , Mustafa A. Alheety , Ahmed R. Mahmood
{"title":"Effect of fullerene ratio as an organic additive on the hydrogen storage of Se nanoparticles","authors":"Ban D. Salih ,&nbsp;Nora A. Salih ,&nbsp;Maysoon A. Hamad ,&nbsp;Mustafa A. Alheety ,&nbsp;Ahmed R. Mahmood","doi":"10.1016/j.cartre.2024.100437","DOIUrl":null,"url":null,"abstract":"<div><div>Fullerene was used as a synthon to produce fullerene-decorated selenium (C<sub>60</sub>-Se) via an in-situ ultrasound-assisted method in the presence of ascorbic acid as a reducing agent. The resulting nanocomposite was characterized by XRD, SEM, and TEM techniques. The characterization techniques prove the formation of ball-like structures with irregular structures due to C<sub>60</sub> and Se, respectively. Furthermore, XRD proves the presence of both Se and C<sub>60</sub> peaks, proving the suggested structure. A study was conducted to change the ratio of fullerene to selenium in order to determine the best ratio that provides the highest hydrogen storage. The study proved that the ratio containing the highest value of selenium showed the highest ability to store hydrogen, which reached 4.1 wt% at 55 bar and a temperature of 77 K. At the equilibrium pressure (55 bar), enthalpy and entropy were calculated as 0.12873 KJ/mol H<sub>2</sub> and 0.690246 <em>J</em>/mol H<sub>2</sub>. K., respectively, proving the physical adsorption.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"18 ","pages":"Article 100437"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fullerene was used as a synthon to produce fullerene-decorated selenium (C60-Se) via an in-situ ultrasound-assisted method in the presence of ascorbic acid as a reducing agent. The resulting nanocomposite was characterized by XRD, SEM, and TEM techniques. The characterization techniques prove the formation of ball-like structures with irregular structures due to C60 and Se, respectively. Furthermore, XRD proves the presence of both Se and C60 peaks, proving the suggested structure. A study was conducted to change the ratio of fullerene to selenium in order to determine the best ratio that provides the highest hydrogen storage. The study proved that the ratio containing the highest value of selenium showed the highest ability to store hydrogen, which reached 4.1 wt% at 55 bar and a temperature of 77 K. At the equilibrium pressure (55 bar), enthalpy and entropy were calculated as 0.12873 KJ/mol H2 and 0.690246 J/mol H2. K., respectively, proving the physical adsorption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Structural and electrochemical characterization of diatomite with lignin, glucose, activated carbon and magnetic nanoparticles Diatomite with TiO2 nanoparticles for the photocatalytic degradation of methylene blue X-ray tomo-ptychography of single micrometric carbon and basalt fibres Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation Nanoconfined water phase transitions in infinite graphene slits: Molecular dynamics simulations and mean-field insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1