Enhanced selectivity of carbon quantum dots for metal ion detection through surface modification by heteroatom doping: A study on optical properties and theoretical approach

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-01 DOI:10.1016/j.cartre.2024.100445
María Belén Cánchig , Floralba López , Zaillmar Morales-Navarro , Alexis Debut , Karla Vizuete , Thibault Terencio , Manuel Caetano , Juan Pablo Saucedo-Vázquez
{"title":"Enhanced selectivity of carbon quantum dots for metal ion detection through surface modification by heteroatom doping: A study on optical properties and theoretical approach","authors":"María Belén Cánchig ,&nbsp;Floralba López ,&nbsp;Zaillmar Morales-Navarro ,&nbsp;Alexis Debut ,&nbsp;Karla Vizuete ,&nbsp;Thibault Terencio ,&nbsp;Manuel Caetano ,&nbsp;Juan Pablo Saucedo-Vázquez","doi":"10.1016/j.cartre.2024.100445","DOIUrl":null,"url":null,"abstract":"<div><div>Water contamination by toxic metal ions has become a significant issue, requiring the development of effective ion detection methods. Traditional analytical techniques often involve toxic elements or complex devices. Carbon quantum dots (CQDs) have emerged as a promising alternative for optic ion detection due to their unique properties and compatibility with living organisms. This study focuses on synthesizing and functionalizing CQDs with various heteroatoms (N, S) to enhance their optical properties and ion selectivity. CQDs were synthesized using citric acid as the carbon source and modified with <span>l</span>-cysteine, ethylenediamine, and diethylenetriamine. The structural and optical properties of the CQDs were determined using several techniques, including FT-IR, TEM, UV–Vis, and Fluorescence Spectroscopy. The results indicate that doping with heteroatoms significantly alters the absorption and emission properties of CQDs. Particularly, nitrogen-doped CQDs (N<img>CQDs) exhibited the highest absorption and emission intensities, making them ideal for sensor applications. The study also demonstrated that functionalization with sulfur could modulate emission frequencies, enhancing the detection capabilities for specific ions. Fluorescence quenching studies revealed that N<img>CQDs and S-CQDs have a high selectivity for Hg²⁺ ions, attributed both electrostatic and covalent interactions formed between the CQDs and Hg²⁺. Computational studies supported these findings, showing that the interaction with Hg²⁺ significantly affects the energy gap of the CQDs, enhancing their sensitivity. This research contributes to the field of environmental monitoring by providing a practical solution for the detection of free metal ions in water through the development of advanced CQD-based sensors.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"18 ","pages":"Article 100445"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266705692400124X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water contamination by toxic metal ions has become a significant issue, requiring the development of effective ion detection methods. Traditional analytical techniques often involve toxic elements or complex devices. Carbon quantum dots (CQDs) have emerged as a promising alternative for optic ion detection due to their unique properties and compatibility with living organisms. This study focuses on synthesizing and functionalizing CQDs with various heteroatoms (N, S) to enhance their optical properties and ion selectivity. CQDs were synthesized using citric acid as the carbon source and modified with l-cysteine, ethylenediamine, and diethylenetriamine. The structural and optical properties of the CQDs were determined using several techniques, including FT-IR, TEM, UV–Vis, and Fluorescence Spectroscopy. The results indicate that doping with heteroatoms significantly alters the absorption and emission properties of CQDs. Particularly, nitrogen-doped CQDs (NCQDs) exhibited the highest absorption and emission intensities, making them ideal for sensor applications. The study also demonstrated that functionalization with sulfur could modulate emission frequencies, enhancing the detection capabilities for specific ions. Fluorescence quenching studies revealed that NCQDs and S-CQDs have a high selectivity for Hg²⁺ ions, attributed both electrostatic and covalent interactions formed between the CQDs and Hg²⁺. Computational studies supported these findings, showing that the interaction with Hg²⁺ significantly affects the energy gap of the CQDs, enhancing their sensitivity. This research contributes to the field of environmental monitoring by providing a practical solution for the detection of free metal ions in water through the development of advanced CQD-based sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Structural and electrochemical characterization of diatomite with lignin, glucose, activated carbon and magnetic nanoparticles Diatomite with TiO2 nanoparticles for the photocatalytic degradation of methylene blue X-ray tomo-ptychography of single micrometric carbon and basalt fibres Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation Nanoconfined water phase transitions in infinite graphene slits: Molecular dynamics simulations and mean-field insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1