Altynay Kaidarova , Viktor Naenen , Ruben Windey , Nick Goossens , Tanmay Sinha , Vijitha Ignatious , Bokai Zhang , Tim P. Mach , Martine Wevers , Jozef Vleugels , Francisco Molina-Lopez
{"title":"Hybrid organic-inorganic functional nanocomposites: From basis to applications in stretchable sensing and energy devices","authors":"Altynay Kaidarova , Viktor Naenen , Ruben Windey , Nick Goossens , Tanmay Sinha , Vijitha Ignatious , Bokai Zhang , Tim P. Mach , Martine Wevers , Jozef Vleugels , Francisco Molina-Lopez","doi":"10.1016/j.mser.2025.100933","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid organic-inorganic functional nanocomposites are crucial in advancing electronics, biomedicine, and environmental science. These multifunctional and multiphase systems combine flexibility and stretchability with a broad spectrum of functional properties. This review delves into the fundamental (di)electric, thermal, and mechanical properties of these materials; the recent developments in their design and processing; and their application in strain, pressure, thermal sensing, energy harvesting, and energy storage. First, emphasis is placed on the role of nanofiller dimensions, spatial distribution, and interface interactions in enhancing material functionalities through meticulous control of the filler loading described by the universal percolation theory. Then, essential stages in nanocomposite fabrication, such as dispersion and deposition, are explored, as those significantly affect final properties. Finally, the review examines reported applications in stretchable electronics, such as mechanical sensors (piezo- and thermoresistive), energy harvesters (photovoltaic, piezoelectric, and thermoelectric), and energy storage devices (nanodielectric and electrochemical). Design strategies to balance functionality and stretchability are discussed, providing a roadmap for future research and development in this vibrant field.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"163 ","pages":"Article 100933"},"PeriodicalIF":31.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000105","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid organic-inorganic functional nanocomposites are crucial in advancing electronics, biomedicine, and environmental science. These multifunctional and multiphase systems combine flexibility and stretchability with a broad spectrum of functional properties. This review delves into the fundamental (di)electric, thermal, and mechanical properties of these materials; the recent developments in their design and processing; and their application in strain, pressure, thermal sensing, energy harvesting, and energy storage. First, emphasis is placed on the role of nanofiller dimensions, spatial distribution, and interface interactions in enhancing material functionalities through meticulous control of the filler loading described by the universal percolation theory. Then, essential stages in nanocomposite fabrication, such as dispersion and deposition, are explored, as those significantly affect final properties. Finally, the review examines reported applications in stretchable electronics, such as mechanical sensors (piezo- and thermoresistive), energy harvesters (photovoltaic, piezoelectric, and thermoelectric), and energy storage devices (nanodielectric and electrochemical). Design strategies to balance functionality and stretchability are discussed, providing a roadmap for future research and development in this vibrant field.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.