Exploring the motivations behind behavior: A theory-driven deep-learning framework for cyberviolence behavior detection

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2025-01-28 DOI:10.1016/j.dss.2025.114409
Xuelong Chen , Yiping Chen , Guojie Yin
{"title":"Exploring the motivations behind behavior: A theory-driven deep-learning framework for cyberviolence behavior detection","authors":"Xuelong Chen ,&nbsp;Yiping Chen ,&nbsp;Guojie Yin","doi":"10.1016/j.dss.2025.114409","DOIUrl":null,"url":null,"abstract":"<div><div>The anonymity and convenience of social media platforms enable the public to express and even vent themselves, which drives a surge of cyberviolence behaviors (CVB). Recent advances in machine learning, especially in deep learning, have drastically benefited CVB detection. However, despite the wide use of state-of-the-art deep-learning models, previous studies only analyzed each post/comment for the presence of (obfuscated) abusive text, which is not comprehensive and exact because the content posted online may not necessarily include negative words. In complex and conflicting situations, people may overlook implicit violence, leading to failures in situational judgment. Herein, we designed a well-grounded and explainable deep-learning framework based on the theory of planned behavior (TPB) to explore the motivations behind CVB to better detect it. Specifically, we constructed a systematic and comprehensive suite of computable features grounded in TPB and then proposed a novel model named <strong>M</strong>ultilevel and <strong>M</strong>ultiattribute <strong>E</strong>mbedding CVB detection model considering <strong>D</strong>ual-view <strong>C</strong>ontextual <strong>I</strong>nformation. Our framework detected implicit and explicit CVB with macro F1 scores of &gt;88.67 %, outperforming state-of-the-art methods. We further provided differentiated strategies according to the scale and distribution of different classes of CVB and proposed related management implications. Our study sheds light on platform operations in managing online content and mitigating the risk of governance cost wastage and deterioration of the cyber ecosystem.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"190 ","pages":"Article 114409"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000107","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The anonymity and convenience of social media platforms enable the public to express and even vent themselves, which drives a surge of cyberviolence behaviors (CVB). Recent advances in machine learning, especially in deep learning, have drastically benefited CVB detection. However, despite the wide use of state-of-the-art deep-learning models, previous studies only analyzed each post/comment for the presence of (obfuscated) abusive text, which is not comprehensive and exact because the content posted online may not necessarily include negative words. In complex and conflicting situations, people may overlook implicit violence, leading to failures in situational judgment. Herein, we designed a well-grounded and explainable deep-learning framework based on the theory of planned behavior (TPB) to explore the motivations behind CVB to better detect it. Specifically, we constructed a systematic and comprehensive suite of computable features grounded in TPB and then proposed a novel model named Multilevel and Multiattribute Embedding CVB detection model considering Dual-view Contextual Information. Our framework detected implicit and explicit CVB with macro F1 scores of >88.67 %, outperforming state-of-the-art methods. We further provided differentiated strategies according to the scale and distribution of different classes of CVB and proposed related management implications. Our study sheds light on platform operations in managing online content and mitigating the risk of governance cost wastage and deterioration of the cyber ecosystem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
Re-evaluating causal inference: Bias reduction in confounder-effect modifier scenarios Editorial Board Optimal advertising strategy for streaming platforms: Whether to purchase external consumer data Balancing the costs and benefits of resilience-based decision making Are helpful reviews indeed helpful? Analyzing the information and economic value of contextual cues in user-generated images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1