Substitutional doping of 2D transition metal dichalcogenides for device applications: Current status, challenges and prospects

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2025-02-05 DOI:10.1016/j.mser.2025.100946
Rajeev Kumar , Amit Kumar Shringi , Hannah Jane Wood , Ivy M. Asuo , Seda Oturak , David Emanuel Sanchez , Tata Sanjay Kanna Sharma , Rajneesh Chaurasiya , Avanish Mishra , Won Mook Choi , Nutifafa Y. Doumon , Ismaila Dabo , Mauricio Terrones , Fei Yan
{"title":"Substitutional doping of 2D transition metal dichalcogenides for device applications: Current status, challenges and prospects","authors":"Rajeev Kumar ,&nbsp;Amit Kumar Shringi ,&nbsp;Hannah Jane Wood ,&nbsp;Ivy M. Asuo ,&nbsp;Seda Oturak ,&nbsp;David Emanuel Sanchez ,&nbsp;Tata Sanjay Kanna Sharma ,&nbsp;Rajneesh Chaurasiya ,&nbsp;Avanish Mishra ,&nbsp;Won Mook Choi ,&nbsp;Nutifafa Y. Doumon ,&nbsp;Ismaila Dabo ,&nbsp;Mauricio Terrones ,&nbsp;Fei Yan","doi":"10.1016/j.mser.2025.100946","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a class of materials with exceptional electronic, optical, and mechanical properties, making them highly tunable for diverse applications in nanoelectronics, optoelectronics, and catalysis. This review focuses on substitutional doping of TMDs, a key strategy to tailor their properties and enhance device performance, with a focus on its applications over the past five years (2019–2024). We delve into both theoretical and experimental doping approaches, including established methods like chemical vapor transport (CVT) and chemical vapor deposition (CVD) alongside liquid phase exfoliation (LPE) and post-synthesis treatments. Advanced growth techniques are also explored. Challenges like dopant uniformity, concentration control, and stability are addressed. The influence of various dopants on the electronic band structure, carrier concentration, and defect engineering is analyzed in detail. We further explore recent advancements in utilizing doped TMDs for field-effect transistors (FETs), photodetectors, sensors, photovoltaics, optoelectronic devices, energy storage and conversion, and even quantum computers. By examining both the potential and limitations of substitutional doping, this review aims to propel future research and technological advancements in this exciting field.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"163 ","pages":"Article 100946"},"PeriodicalIF":31.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a class of materials with exceptional electronic, optical, and mechanical properties, making them highly tunable for diverse applications in nanoelectronics, optoelectronics, and catalysis. This review focuses on substitutional doping of TMDs, a key strategy to tailor their properties and enhance device performance, with a focus on its applications over the past five years (2019–2024). We delve into both theoretical and experimental doping approaches, including established methods like chemical vapor transport (CVT) and chemical vapor deposition (CVD) alongside liquid phase exfoliation (LPE) and post-synthesis treatments. Advanced growth techniques are also explored. Challenges like dopant uniformity, concentration control, and stability are addressed. The influence of various dopants on the electronic band structure, carrier concentration, and defect engineering is analyzed in detail. We further explore recent advancements in utilizing doped TMDs for field-effect transistors (FETs), photodetectors, sensors, photovoltaics, optoelectronic devices, energy storage and conversion, and even quantum computers. By examining both the potential and limitations of substitutional doping, this review aims to propel future research and technological advancements in this exciting field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
All-in-one self-powered wearable biosensors systems Water‐Induced Modulation of Bipolaron Formation in N-type Polymeric Mixed Conductors Substitutional doping of 2D transition metal dichalcogenides for device applications: Current status, challenges and prospects Temperature-switchable electrolyte with desirable phase transition behavior for thermal protection of lithium-ion batteries Hybrid organic-inorganic functional nanocomposites: From basis to applications in stretchable sensing and energy devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1