Monolithic three-dimensional integration with 2D material-based p-type transistors

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-12-02 DOI:10.1016/j.mser.2024.100893
Taoyu Zou , Youjin Reo , Seongmin Heo , Haksoon Jung , Soonhyo Kim , Ao Liu , Yong-Young Noh
{"title":"Monolithic three-dimensional integration with 2D material-based p-type transistors","authors":"Taoyu Zou ,&nbsp;Youjin Reo ,&nbsp;Seongmin Heo ,&nbsp;Haksoon Jung ,&nbsp;Soonhyo Kim ,&nbsp;Ao Liu ,&nbsp;Yong-Young Noh","doi":"10.1016/j.mser.2024.100893","DOIUrl":null,"url":null,"abstract":"<div><div>Monolithic three-dimensional (M3D) integration offers a promising solution to the limitations of silicon (Si) integrated circuits as they reach their physical limits, including problems with power use and heat dissipation. By enabling the vertical stacking of multiple device layers, M3D integration significantly increases device density, enhances performance, and reduces power consumption and communication delays between components. Two-dimensional (2D) materials, recognized for their exceptional electrical properties and minimal thickness, offer a promising approach to advancing the scaling of complementary metal-oxide-semiconductor (CMOS) transistors. 2D material-based p-type transistors play a vital role in creating CMOS circuits with low static power dissipation and high noise immunity, which are critical for the efficiency and reliability of electronic devices. Although significant progress has been made in developing n-type 2D transistors and integrating them into M3D architectures, advancements in M3D integration with p-type 2D transistors are still in the early stages. Here, the recent status and ongoing challenges in M3D integration are reviewed, focusing on 2D materials-based p-type transistors. We provide an overview of key 2D p-type materials and their synthesis techniques, followed by a detailed discussion of integration strategies, including planar integration, 3D stacked complementary transistors, and M3D integration. Finally, we discuss the challenges, potential strategies, and opportunities in achieving M3D integration with high-performance 2D p-type transistors. The review aims to provide a foundational understanding for driving future innovations in high-performance, energy-efficient, and densely integrated M3D CMOS electronic devices.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"163 ","pages":"Article 100893"},"PeriodicalIF":31.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001232","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Monolithic three-dimensional (M3D) integration offers a promising solution to the limitations of silicon (Si) integrated circuits as they reach their physical limits, including problems with power use and heat dissipation. By enabling the vertical stacking of multiple device layers, M3D integration significantly increases device density, enhances performance, and reduces power consumption and communication delays between components. Two-dimensional (2D) materials, recognized for their exceptional electrical properties and minimal thickness, offer a promising approach to advancing the scaling of complementary metal-oxide-semiconductor (CMOS) transistors. 2D material-based p-type transistors play a vital role in creating CMOS circuits with low static power dissipation and high noise immunity, which are critical for the efficiency and reliability of electronic devices. Although significant progress has been made in developing n-type 2D transistors and integrating them into M3D architectures, advancements in M3D integration with p-type 2D transistors are still in the early stages. Here, the recent status and ongoing challenges in M3D integration are reviewed, focusing on 2D materials-based p-type transistors. We provide an overview of key 2D p-type materials and their synthesis techniques, followed by a detailed discussion of integration strategies, including planar integration, 3D stacked complementary transistors, and M3D integration. Finally, we discuss the challenges, potential strategies, and opportunities in achieving M3D integration with high-performance 2D p-type transistors. The review aims to provide a foundational understanding for driving future innovations in high-performance, energy-efficient, and densely integrated M3D CMOS electronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
A systematic investigation on pyridine derived solid additives inducing fibrillar morphology for highly efficient organic solar cells with over 20 % efficiency Advancements in direct recycling technologies for lithium-ion battery cathodes: Overcoming challenges in cathode regeneration Unraveling the potential of MXenes as multifunctional cathodes: Innovations and challenges for next-generation energy storage systems Designing organic mixed ionic-electronic conductors with low environmental footprint for bioelectronics and energy storage Advances in 2D materials for wearable biomonitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1