Experimental study on eliminating various typical fire smokes by ultrasonic field

IF 4.3 2区 材料科学 Q2 ENGINEERING, CHEMICAL Particuology Pub Date : 2025-01-01 DOI:10.1016/j.partic.2024.11.010
Shu Liu, Guangxue Zhang, Weihua Li, Hailin Gu, Dingkun Yuan, Sirui Tong, Jiangrong Xu
{"title":"Experimental study on eliminating various typical fire smokes by ultrasonic field","authors":"Shu Liu,&nbsp;Guangxue Zhang,&nbsp;Weihua Li,&nbsp;Hailin Gu,&nbsp;Dingkun Yuan,&nbsp;Sirui Tong,&nbsp;Jiangrong Xu","doi":"10.1016/j.partic.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>To explore the effectiveness of acoustic agglomeration technology in eliminating urban fire smoke, an experimental setup for eliminating continuous smoke is built. This study uses airborne ultrasonic transducers as the sound source, with resonant frequencies are 13, 16, 18, and 20 kHz, respectively. Typical urban fire smoke is produced by the combustion of materials such as polystyrene (PS), polyvinyl chloride (PVC), carton, cotton, pine sawdust, and birch sawdust. The effects of ultrasonic frequency, sound pressure level, residence time and initial concentration on the elimination of both single material smoke and mixed material smoke types are investigated. Results indicate that the 16 kHz sound waves are most effective for PS, PVC, and carton smoke, whereas the optimum frequency for birch smoke is between 16 and 18 kHz. The optimal frequency of mixed smoke is significantly influenced by particle size and the ratio of large to small particles. When the sound pressure level is 142–154 dB, and the residence time is 4 s, the visibility of all types of smoke increased from 1 m to above the safe escape threshold (2.5 m). Furthermore, higher initial concentrations of smoke result in more effective elimination.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 180-192"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002359","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the effectiveness of acoustic agglomeration technology in eliminating urban fire smoke, an experimental setup for eliminating continuous smoke is built. This study uses airborne ultrasonic transducers as the sound source, with resonant frequencies are 13, 16, 18, and 20 kHz, respectively. Typical urban fire smoke is produced by the combustion of materials such as polystyrene (PS), polyvinyl chloride (PVC), carton, cotton, pine sawdust, and birch sawdust. The effects of ultrasonic frequency, sound pressure level, residence time and initial concentration on the elimination of both single material smoke and mixed material smoke types are investigated. Results indicate that the 16 kHz sound waves are most effective for PS, PVC, and carton smoke, whereas the optimum frequency for birch smoke is between 16 and 18 kHz. The optimal frequency of mixed smoke is significantly influenced by particle size and the ratio of large to small particles. When the sound pressure level is 142–154 dB, and the residence time is 4 s, the visibility of all types of smoke increased from 1 m to above the safe escape threshold (2.5 m). Furthermore, higher initial concentrations of smoke result in more effective elimination.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声场消除各种典型火灾烟雾的实验研究
为了探索声凝聚技术在消除城市火灾烟气中的有效性,建立了消除连续烟气的实验装置。本研究采用机载超声换能器作为声源,其谐振频率分别为13、16、18、20 kHz。典型的城市火灾烟雾是由聚苯乙烯(PS)、聚氯乙烯(PVC)、纸箱、棉花、松木锯末和桦木锯末等材料燃烧产生的。研究了超声频率、声压级、停留时间和初始浓度对消除单一材料烟雾和混合材料烟雾的影响。结果表明,16 kHz的声波对PS、PVC和纸盒烟雾效果最好,而桦木烟雾的最佳频率为16 ~ 18 kHz。混合烟的最佳频率受颗粒大小和大小颗粒比的显著影响。当声压级为142 ~ 154 dB,停留时间为4 s时,各类烟雾的能见度从1 m上升到2.5 m以上,且初始烟雾浓度越高,消除效果越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
期刊最新文献
Stable flow characteristics of Geldart C desulfurization ash particles in a novel loop-coupled riser under swirling-flow enhancement Toughening modification of bismaleimide resin with a cyano-containing thermoplastic PPENK particles Hydrodynamic conditions governing the initiation of buried particles in viscous debris flows Plasma dynamic synthesis of hybrid carbide-reinforced aluminium matrix composites Morphological convergence in solid-state synthesis: Unveiling the critical role of TiO2 precursor size for high-performance H2TiO3 lithium ion-sieves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1