{"title":"The hydrological hazard in artificially-drained mining and post-mining areas–A significant environmental aspect requiring systemic management","authors":"Dariusz Ignacy","doi":"10.1016/j.wri.2024.100275","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes a case study of a highly urbanized artificially-drained mine subsidence area massively impacted by mining. Within this area, the surface has subsided over 40 m and the area threatened by flooding is 18 times larger than the observable inundation today. This surface relief disturbance and hydrological hazard is shown using the author's innovative concepts in the form of relative elevation models and four hydrological hazard frameworks. This paper contains analyses supporting the main thesis that in highly transformed and artificially-drained mining and post-mining areas, the hydrological hazard should be classified as a significant environmental aspect requiring systemic management. It outlines in detail the above premise by describing the inter-related mining and non-mining processes causing changes to the hydrological hazard leading to the subsequent complexity of mitigation measures. The introduction of relative elevation models and newly-defined hydrological hazard frameworks are projected onto a site-specific hydromorphologic map. This map forms the hydrological basis for identifying and dimensioning existing flood-related geohazards. The innovative contribution is the ability to incorporate time-related data to assess past and future hydrological hazards. This knowledge makes it possible to simplify flood-related geohazard mitigation. Additionally, it affords policy-makers a range of options regarding future spatial planning to optimize land-use according to societal will. To date, environmental management systems do not sufficiently take into account the mining-induced hydrological hazard in mine subsidence areas. The main goal of this paper is to show that the existing gap in management capability of the hydrological hazard and flood-related geohazards and risks can be resolved by the author's novel site-specific decision support tools.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"33 ","pages":"Article 100275"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a case study of a highly urbanized artificially-drained mine subsidence area massively impacted by mining. Within this area, the surface has subsided over 40 m and the area threatened by flooding is 18 times larger than the observable inundation today. This surface relief disturbance and hydrological hazard is shown using the author's innovative concepts in the form of relative elevation models and four hydrological hazard frameworks. This paper contains analyses supporting the main thesis that in highly transformed and artificially-drained mining and post-mining areas, the hydrological hazard should be classified as a significant environmental aspect requiring systemic management. It outlines in detail the above premise by describing the inter-related mining and non-mining processes causing changes to the hydrological hazard leading to the subsequent complexity of mitigation measures. The introduction of relative elevation models and newly-defined hydrological hazard frameworks are projected onto a site-specific hydromorphologic map. This map forms the hydrological basis for identifying and dimensioning existing flood-related geohazards. The innovative contribution is the ability to incorporate time-related data to assess past and future hydrological hazards. This knowledge makes it possible to simplify flood-related geohazard mitigation. Additionally, it affords policy-makers a range of options regarding future spatial planning to optimize land-use according to societal will. To date, environmental management systems do not sufficiently take into account the mining-induced hydrological hazard in mine subsidence areas. The main goal of this paper is to show that the existing gap in management capability of the hydrological hazard and flood-related geohazards and risks can be resolved by the author's novel site-specific decision support tools.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry