Juan L. Cortes-Muñoz , Johan-Moritz Kux , Pablo J. Sáez , Arturo Jiménez-Sánchez
{"title":"Fluorescent probes to track complex membrane blebbing","authors":"Juan L. Cortes-Muñoz , Johan-Moritz Kux , Pablo J. Sáez , Arturo Jiménez-Sánchez","doi":"10.1016/j.biosx.2025.100584","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular blebbing, pivotal in processes such as apoptosis, cytokinesis, and migration, involves dynamic interactions between the actomyosin network and microtubules. However, existing probes inadequately capture these simultaneous interactions, limiting our ability to study blebbing mechanisms. We present <strong>AztecBleb</strong> probes (<strong>AztecBleb</strong><sup><strong>DAPI</strong></sup>, <strong>AztecBleb</strong><sup><strong>GFP</strong></sup>, <strong>AztecBleb</strong><sup><strong>TxR</strong></sup>, <strong>AztecBleb</strong><sup><strong>Cy5</strong></sup>), novel fluorescent reporters designed to selectively target and monitor blebbing in real-time. These probes incorporate a pregnenolone-based scaffold as a hydrophobic core derived from abiraterone acetate, facilitating precise localization to blebs and microtubules without disrupting cellular function. Through persistent staining of cell blebs, these photostable and biocompatible probes enable continuous monitoring of blebbing and microtubule dynamics during cellular migration. Our approach provides new insights into the coordination of bleb formation and cytoskeletal remodeling, offering a unique tool for studying motility-driven cellular behaviors.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100584"},"PeriodicalIF":10.6100,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular blebbing, pivotal in processes such as apoptosis, cytokinesis, and migration, involves dynamic interactions between the actomyosin network and microtubules. However, existing probes inadequately capture these simultaneous interactions, limiting our ability to study blebbing mechanisms. We present AztecBleb probes (AztecBlebDAPI, AztecBlebGFP, AztecBlebTxR, AztecBlebCy5), novel fluorescent reporters designed to selectively target and monitor blebbing in real-time. These probes incorporate a pregnenolone-based scaffold as a hydrophobic core derived from abiraterone acetate, facilitating precise localization to blebs and microtubules without disrupting cellular function. Through persistent staining of cell blebs, these photostable and biocompatible probes enable continuous monitoring of blebbing and microtubule dynamics during cellular migration. Our approach provides new insights into the coordination of bleb formation and cytoskeletal remodeling, offering a unique tool for studying motility-driven cellular behaviors.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.