{"title":"Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production","authors":"Sikai Wu , Xuefei Wang , Huogen Yu","doi":"10.1016/j.cjsc.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid decomposition of H<sub>2</sub>O<sub>2</sub> on the surface of inorganic photocatalyst (BiVO<sub>4</sub>) and insufficient proton supply from water leads to a low photosynthetic yield of H<sub>2</sub>O<sub>2</sub>. Herein, hydrous tin dioxide (HSnO) with massive hydroxyl groups is coated on the BiVO<sub>4</sub> surface to greatly improve the photocatalytic H<sub>2</sub>O<sub>2</sub> activity via simultaneous realization of providing sufficient protons and inhibiting H<sub>2</sub>O<sub>2</sub> decomposition. After coating HSnO, Au nanoparticles as the O<sub>2</sub>-reduction active sites are selectively deposited on the (010) facet of BiVO<sub>4</sub> to synthesize Au/BiVO<sub>4</sub>@HSnO photocatalyst. The resulting Au/BiVO<sub>4</sub>@HSnO photocatalyst exhibits excellent H<sub>2</sub>O<sub>2</sub>-production performance, in which the photogenerated H<sub>2</sub>O<sub>2</sub> concentration (210.7 μmol L<sup>−1</sup>) is about 4.8 times higher than that of Au/BiVO<sub>4</sub> after 2 h light irradiation in pure water. The outstanding photocatalytic performance can be attributed to simultaneous enhancement of H<sub>2</sub>O<sub>2</sub> generation and the suppression of H<sub>2</sub>O<sub>2</sub> decomposition by HSnO coating. Specifically, the HSnO coating with massive hydroxyl groups provides enough protons to promote the catalytic transformation of O<sub>2</sub> into H<sub>2</sub>O<sub>2</sub> on Au nanoparticles. More importantly, this coating not only allows water molecules to effectively permeate onto BiVO<sub>4</sub> surface for rapid oxidation reaction, but also greatly inhibits the reverse reaction of H<sub>2</sub>O<sub>2</sub> decomposition via decreasing its affinity with BiVO<sub>4</sub> surface. This research offers new insights for boosting photocatalytic H<sub>2</sub>O<sub>2</sub> production through surface coating strategy.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 12","pages":"Article 100457"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003398","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid decomposition of H2O2 on the surface of inorganic photocatalyst (BiVO4) and insufficient proton supply from water leads to a low photosynthetic yield of H2O2. Herein, hydrous tin dioxide (HSnO) with massive hydroxyl groups is coated on the BiVO4 surface to greatly improve the photocatalytic H2O2 activity via simultaneous realization of providing sufficient protons and inhibiting H2O2 decomposition. After coating HSnO, Au nanoparticles as the O2-reduction active sites are selectively deposited on the (010) facet of BiVO4 to synthesize Au/BiVO4@HSnO photocatalyst. The resulting Au/BiVO4@HSnO photocatalyst exhibits excellent H2O2-production performance, in which the photogenerated H2O2 concentration (210.7 μmol L−1) is about 4.8 times higher than that of Au/BiVO4 after 2 h light irradiation in pure water. The outstanding photocatalytic performance can be attributed to simultaneous enhancement of H2O2 generation and the suppression of H2O2 decomposition by HSnO coating. Specifically, the HSnO coating with massive hydroxyl groups provides enough protons to promote the catalytic transformation of O2 into H2O2 on Au nanoparticles. More importantly, this coating not only allows water molecules to effectively permeate onto BiVO4 surface for rapid oxidation reaction, but also greatly inhibits the reverse reaction of H2O2 decomposition via decreasing its affinity with BiVO4 surface. This research offers new insights for boosting photocatalytic H2O2 production through surface coating strategy.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.