Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang
{"title":"State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review","authors":"Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang","doi":"10.1016/j.cjsc.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><div>g-C<sub>3</sub>N<sub>4</sub> is a promising non-metallic photocatalyst recognized for its unique structural and physicochemical properties. Recent reviews have addressed g-C<sub>3</sub>N<sub>4</sub>-based photocatalysis; however, the rapid progress in big data and artificial intelligence has significantly accelerated the design, synthesis, and optimization of these materials. Machine learning, theoretical simulations, and advanced <em>in-situ</em> characterization techniques have deepened our understanding of their photocatalytic mechanisms. This review critically evaluates advancements in g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts over the last two to three years, focusing on strategies to improve photogenerated charge separation, expand light absorption, and enhance stability and catalytic efficiency. It discusses cutting-edge <em>in-situ</em> characterization methods alongside machine learning approaches for predicting and optimizing applications in photocatalytic H<sub>2</sub> evolution, CO<sub>2</sub> reduction, pollutant degradation, H<sub>2</sub>O<sub>2</sub> production, and nitrogen fixation. Finally, it proposes prospective strategies for further enhancing the performance of g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts, aiming to guide the design of high-performance two-dimensional carbon-based photocatalysts.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 12","pages":"Article 100469"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003519","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
g-C3N4 is a promising non-metallic photocatalyst recognized for its unique structural and physicochemical properties. Recent reviews have addressed g-C3N4-based photocatalysis; however, the rapid progress in big data and artificial intelligence has significantly accelerated the design, synthesis, and optimization of these materials. Machine learning, theoretical simulations, and advanced in-situ characterization techniques have deepened our understanding of their photocatalytic mechanisms. This review critically evaluates advancements in g-C3N4-based photocatalysts over the last two to three years, focusing on strategies to improve photogenerated charge separation, expand light absorption, and enhance stability and catalytic efficiency. It discusses cutting-edge in-situ characterization methods alongside machine learning approaches for predicting and optimizing applications in photocatalytic H2 evolution, CO2 reduction, pollutant degradation, H2O2 production, and nitrogen fixation. Finally, it proposes prospective strategies for further enhancing the performance of g-C3N4-based photocatalysts, aiming to guide the design of high-performance two-dimensional carbon-based photocatalysts.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.