Microplastic-enhanced chromium toxicity in Scenedesmus obliquus: Synergistic effects on algal growth and biochemical responses

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2025-02-01 DOI:10.1016/j.ecoenv.2025.117813
Luoxin Li , Jiani Yu , Yonghua Ma , Hui Tan , Fengxia Tan , Yi Chai , Hui Zhang
{"title":"Microplastic-enhanced chromium toxicity in Scenedesmus obliquus: Synergistic effects on algal growth and biochemical responses","authors":"Luoxin Li ,&nbsp;Jiani Yu ,&nbsp;Yonghua Ma ,&nbsp;Hui Tan ,&nbsp;Fengxia Tan ,&nbsp;Yi Chai ,&nbsp;Hui Zhang","doi":"10.1016/j.ecoenv.2025.117813","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the combined toxicity of microplastics (MPs) and chromium (Cr<sup>6 +</sup>) on the freshwater green algae <em>Scenedesmus obliquus</em>. As emerging contaminants in aquatic ecosystems, MPs have been shown to intensify the toxicity of Cr<sup>6+</sup>, leading to a more significant impact on algal growth and biochemical responses than either stressor alone. A 30-day experimental simulation revealed that co-exposure to Cr<sup>6+</sup> and 5 µm diameter polystyrene MPs resulted in significantly enhanced toxicity compared to individual exposures, characterized by a notable decrease in algal growth, diminished photosynthetic pigments, and protein content, alongside oxidative system damage. 100 nm MPs exhibited a distinct toxicity profile, with more pronounced effects when not combined with Cr<sup>6+</sup>, suggesting size-dependent interactions with algal cells. Transcriptomic analysis illuminated the complex regulatory mechanisms, indicating that toxicity primarily modulates metabolic pathways essential for photosynthesis, oxidative phosphorylation, the TCA cycle, and ribosome function in <em>Scenedesmus obliquus</em>. This study not only delineates the distinct toxicity effects of single and combined exposure systems but also emphasizes the need for a deeper understanding of the role of MPs in environmental pollution and their potential to modulate the toxicity of heavy metals in aquatic ecosystems.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"291 ","pages":"Article 117813"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325001496","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the combined toxicity of microplastics (MPs) and chromium (Cr6 +) on the freshwater green algae Scenedesmus obliquus. As emerging contaminants in aquatic ecosystems, MPs have been shown to intensify the toxicity of Cr6+, leading to a more significant impact on algal growth and biochemical responses than either stressor alone. A 30-day experimental simulation revealed that co-exposure to Cr6+ and 5 µm diameter polystyrene MPs resulted in significantly enhanced toxicity compared to individual exposures, characterized by a notable decrease in algal growth, diminished photosynthetic pigments, and protein content, alongside oxidative system damage. 100 nm MPs exhibited a distinct toxicity profile, with more pronounced effects when not combined with Cr6+, suggesting size-dependent interactions with algal cells. Transcriptomic analysis illuminated the complex regulatory mechanisms, indicating that toxicity primarily modulates metabolic pathways essential for photosynthesis, oxidative phosphorylation, the TCA cycle, and ribosome function in Scenedesmus obliquus. This study not only delineates the distinct toxicity effects of single and combined exposure systems but also emphasizes the need for a deeper understanding of the role of MPs in environmental pollution and their potential to modulate the toxicity of heavy metals in aquatic ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Maternal urinary levels of PAH metabolites, umbilical cord blood telomere length and anthropometric indices in newborns Impact of variations in airborne microbiota on pneumonia infection: An exploratory study Potential risk of heavy metals release in sediments and soils of the Yellow River Basin (Henan section): A perspective on bioavailability and bioaccessibility Investigating the role and mechanisms of bisphenol compounds in premature ovarian insufficiency using computational biology and bioinformatics Association between exposure to 35 environmental pollutants and mortality from cerebrovascular diseases: A long-term prospective study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1