Leila Mohammadi , Theodore Kolokolnikov , David Iron , Tamara A. Franz-Odendaal
{"title":"Stripe patterns for Gierer–Meinhard model in spatially varying thin domains","authors":"Leila Mohammadi , Theodore Kolokolnikov , David Iron , Tamara A. Franz-Odendaal","doi":"10.1016/j.physd.2024.134480","DOIUrl":null,"url":null,"abstract":"<div><div>We explore pattern formation for the GM model on thin domains. If the domain is sufficiently thin, the pattern consists of stripes which are nearly one-dimensional. We analyze patterns consisting of one, two or many stripes. We find that a single stripe can be located either at the thickest or thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes, we derive an effective pattern density description of the equilibrium state. The effective density is easily computable as a solution of a first order ODE subject to an integral constraint. Depending on problem parameters, the resulting pattern can be either global spanning the entire domain, or can be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds are derived from the continuum density limit of many stripes. Full two-dimensional numerical simulations are performed and are shown to be in agreement with the asymptotic results.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134480"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004305","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We explore pattern formation for the GM model on thin domains. If the domain is sufficiently thin, the pattern consists of stripes which are nearly one-dimensional. We analyze patterns consisting of one, two or many stripes. We find that a single stripe can be located either at the thickest or thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes, we derive an effective pattern density description of the equilibrium state. The effective density is easily computable as a solution of a first order ODE subject to an integral constraint. Depending on problem parameters, the resulting pattern can be either global spanning the entire domain, or can be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds are derived from the continuum density limit of many stripes. Full two-dimensional numerical simulations are performed and are shown to be in agreement with the asymptotic results.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.