Crayfish shell biochar for methyl violet adsorption: Equilibrium and kinetic studies

Azrul Nurfaiz Mohd Faizal , Chew Hui Wen , Nicky Rahmana Putra , Ahmad Syahmi Zaini , Augustine Agi , Abu Hassan Nordin , Muhammad Abbas Ahmad Zaini
{"title":"Crayfish shell biochar for methyl violet adsorption: Equilibrium and kinetic studies","authors":"Azrul Nurfaiz Mohd Faizal ,&nbsp;Chew Hui Wen ,&nbsp;Nicky Rahmana Putra ,&nbsp;Ahmad Syahmi Zaini ,&nbsp;Augustine Agi ,&nbsp;Abu Hassan Nordin ,&nbsp;Muhammad Abbas Ahmad Zaini","doi":"10.1016/j.nxsust.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><div>This work was aimed to establish the equilibrium and kinetics of methyl violet removal onto crayfish shell biochars. The biochars were prepared through pyrolysis at 500, 650 and 800 <span><math><mi>℃</mi></math></span> for 1.5 h. The biochars were labelled as CS500, CS650 and CS800, respectively. All biochars are highly mesoporous with CS650 exhibits a higher surface area of 665 m<sup>2</sup>/g. The adsorption results are tied up with the physiochemical properties of biochars. The CS800 displays the maximum dye capacity at 1079 mg/g. The performance of biochars is given in the order of, CS800 &gt; CS650 &gt; CS500. The equilibrium of methyl violet adsorption was best described by modified Langmuir isotherm, while the kinetic data obeyed pseudo-second-order model. The removal of methyl violet is governed partly by precipitation onto crayfish shell biochars. To conclude, the crayfish shell is a potential feedstock of biochar for dye wastewater treatment.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work was aimed to establish the equilibrium and kinetics of methyl violet removal onto crayfish shell biochars. The biochars were prepared through pyrolysis at 500, 650 and 800 for 1.5 h. The biochars were labelled as CS500, CS650 and CS800, respectively. All biochars are highly mesoporous with CS650 exhibits a higher surface area of 665 m2/g. The adsorption results are tied up with the physiochemical properties of biochars. The CS800 displays the maximum dye capacity at 1079 mg/g. The performance of biochars is given in the order of, CS800 > CS650 > CS500. The equilibrium of methyl violet adsorption was best described by modified Langmuir isotherm, while the kinetic data obeyed pseudo-second-order model. The removal of methyl violet is governed partly by precipitation onto crayfish shell biochars. To conclude, the crayfish shell is a potential feedstock of biochar for dye wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Phosphorus capture from treated sanitary wastewater using a waste-derived SiO2@FeOOH composite: Robustness, Ca2+ interactions, and recovery perspectives Forecasting of municipal solid waste generation in Türkiye and techno-economic-environmental assessment of electricity generation via incineration till 2032 Electrochemical urea degradation and energy co-generation using palladium and iron-based catalysts California’s Senate Bill 596: Spearheading the global transition to sustainable cement Performance of concrete containing different ratios of metakaolin and magnetized water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1