Min Qian , Yuan Zhang , Yu Bian , Sheng-ye Liu , Xue-song Feng
{"title":"Novel materials based electrochemical sensors for nitrophenols in environment","authors":"Min Qian , Yuan Zhang , Yu Bian , Sheng-ye Liu , Xue-song Feng","doi":"10.1016/j.teac.2024.e00255","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrophenols represent a class of versatile chemical intermediates that find extensive applications across diverse sectors including leather processing, pharmaceuticals, and chemical synthesis. Owing to their ubiquitous usage, these constituents permeate the environment via multiple channels, giving rise to a plethora of risks and toxic effects. The contemporary landscape has witnessed an upsurge in the innovation of uncomplicated, expeditious, environmentally sustainable, and highly efficacious techniques tailored for the identification and quantification of these environmental contaminants. In this regard, sensors are considered promising research tools for analyzing environmental pollutants including NPs due to their high sensitivity, rapid response, and ease of miniaturization. Recently, significant advancements have been made in sensor development, particularly with the incorporation of advanced materials such as metal nanoparticles, metal oxide nanoparticles, graphene and graphene oxide, carbon nanotubes, porous carbon, polymers, metal-organic frameworks, quantum dots. This review critically evaluates the latest trends in sensor platforms for the detection of nitrophenols, with a focus on the role of novel materials in enhancing sensor performance. It discusses the progress achieved in terms of sensitivity, selectivity, and stability, while comparing the advantages, limitations, and future prospects of these materials. The article also highlights key challenges in the development of sensors, including further improvements in sensing performance, long-term stability, environmental adaptability, environmental sustainability, and cost-effectiveness, while providing insights into emerging trends in sensor technology.</div></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"45 ","pages":"Article e00255"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221415882400031X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrophenols represent a class of versatile chemical intermediates that find extensive applications across diverse sectors including leather processing, pharmaceuticals, and chemical synthesis. Owing to their ubiquitous usage, these constituents permeate the environment via multiple channels, giving rise to a plethora of risks and toxic effects. The contemporary landscape has witnessed an upsurge in the innovation of uncomplicated, expeditious, environmentally sustainable, and highly efficacious techniques tailored for the identification and quantification of these environmental contaminants. In this regard, sensors are considered promising research tools for analyzing environmental pollutants including NPs due to their high sensitivity, rapid response, and ease of miniaturization. Recently, significant advancements have been made in sensor development, particularly with the incorporation of advanced materials such as metal nanoparticles, metal oxide nanoparticles, graphene and graphene oxide, carbon nanotubes, porous carbon, polymers, metal-organic frameworks, quantum dots. This review critically evaluates the latest trends in sensor platforms for the detection of nitrophenols, with a focus on the role of novel materials in enhancing sensor performance. It discusses the progress achieved in terms of sensitivity, selectivity, and stability, while comparing the advantages, limitations, and future prospects of these materials. The article also highlights key challenges in the development of sensors, including further improvements in sensing performance, long-term stability, environmental adaptability, environmental sustainability, and cost-effectiveness, while providing insights into emerging trends in sensor technology.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.