Fold bifurcation identification through scientific machine learning

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2025-02-01 DOI:10.1016/j.physd.2024.134490
Giuseppe Habib , Ádám Horváth
{"title":"Fold bifurcation identification through scientific machine learning","authors":"Giuseppe Habib ,&nbsp;Ádám Horváth","doi":"10.1016/j.physd.2024.134490","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs scientific machine learning to identify transient time series of dynamical systems near a fold bifurcation of periodic solutions. The unique aspect of this work is that a convolutional neural network (CNN) is trained with a relatively small amount of data and on a single, very simple system, yet it is tested on much more complicated systems. This task requires strong generalization capabilities, which are achieved by incorporating physics-based information. This information is provided through a specific pre-processing of the input data, which includes transformation into polar coordinates, normalization, transformation into the logarithmic scale, and filtering through a moving mean. The results demonstrate that such data pre-processing enables the CNN to grasp the important features related to transient time-series near a fold bifurcation, namely, the trend of the oscillation amplitude, and disregard other characteristics that are not particularly relevant, such as the vibration frequency. The developed CNN was able to correctly classify transient trajectories near a fold for a mass-on-moving-belt system, a van der Pol-Duffing oscillator with an attached tuned mass damper, and a pitch-and-plunge wing profile. The results contribute to the progress towards the development of similar CNNs effective in real-life applications such as safety monitoring of dynamical systems.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134490"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004408","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs scientific machine learning to identify transient time series of dynamical systems near a fold bifurcation of periodic solutions. The unique aspect of this work is that a convolutional neural network (CNN) is trained with a relatively small amount of data and on a single, very simple system, yet it is tested on much more complicated systems. This task requires strong generalization capabilities, which are achieved by incorporating physics-based information. This information is provided through a specific pre-processing of the input data, which includes transformation into polar coordinates, normalization, transformation into the logarithmic scale, and filtering through a moving mean. The results demonstrate that such data pre-processing enables the CNN to grasp the important features related to transient time-series near a fold bifurcation, namely, the trend of the oscillation amplitude, and disregard other characteristics that are not particularly relevant, such as the vibration frequency. The developed CNN was able to correctly classify transient trajectories near a fold for a mass-on-moving-belt system, a van der Pol-Duffing oscillator with an attached tuned mass damper, and a pitch-and-plunge wing profile. The results contribute to the progress towards the development of similar CNNs effective in real-life applications such as safety monitoring of dynamical systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Editorial Board Accelerating flapping flight analysis: Reducing CFD dependency with a hybrid decision tree approach for swift velocity predictions Soliton interaction and nonlinear localized waves in one-dimensional nonlinear acoustic metamaterials Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation Construction and analysis of multi-lump solutions of dispersive long wave equations via integer partitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1