{"title":"Fold bifurcation identification through scientific machine learning","authors":"Giuseppe Habib , Ádám Horváth","doi":"10.1016/j.physd.2024.134490","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs scientific machine learning to identify transient time series of dynamical systems near a fold bifurcation of periodic solutions. The unique aspect of this work is that a convolutional neural network (CNN) is trained with a relatively small amount of data and on a single, very simple system, yet it is tested on much more complicated systems. This task requires strong generalization capabilities, which are achieved by incorporating physics-based information. This information is provided through a specific pre-processing of the input data, which includes transformation into polar coordinates, normalization, transformation into the logarithmic scale, and filtering through a moving mean. The results demonstrate that such data pre-processing enables the CNN to grasp the important features related to transient time-series near a fold bifurcation, namely, the trend of the oscillation amplitude, and disregard other characteristics that are not particularly relevant, such as the vibration frequency. The developed CNN was able to correctly classify transient trajectories near a fold for a mass-on-moving-belt system, a van der Pol-Duffing oscillator with an attached tuned mass damper, and a pitch-and-plunge wing profile. The results contribute to the progress towards the development of similar CNNs effective in real-life applications such as safety monitoring of dynamical systems.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134490"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004408","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs scientific machine learning to identify transient time series of dynamical systems near a fold bifurcation of periodic solutions. The unique aspect of this work is that a convolutional neural network (CNN) is trained with a relatively small amount of data and on a single, very simple system, yet it is tested on much more complicated systems. This task requires strong generalization capabilities, which are achieved by incorporating physics-based information. This information is provided through a specific pre-processing of the input data, which includes transformation into polar coordinates, normalization, transformation into the logarithmic scale, and filtering through a moving mean. The results demonstrate that such data pre-processing enables the CNN to grasp the important features related to transient time-series near a fold bifurcation, namely, the trend of the oscillation amplitude, and disregard other characteristics that are not particularly relevant, such as the vibration frequency. The developed CNN was able to correctly classify transient trajectories near a fold for a mass-on-moving-belt system, a van der Pol-Duffing oscillator with an attached tuned mass damper, and a pitch-and-plunge wing profile. The results contribute to the progress towards the development of similar CNNs effective in real-life applications such as safety monitoring of dynamical systems.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.