Electrophoretic techniques for rapid detection of bacterial pneumonia: Current status and future perspectives

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY International Journal of Electrochemical Science Pub Date : 2025-02-01 DOI:10.1016/j.ijoes.2025.100928
Aiqin Zhong , Zhijun Li , Yiqun Song
{"title":"Electrophoretic techniques for rapid detection of bacterial pneumonia: Current status and future perspectives","authors":"Aiqin Zhong ,&nbsp;Zhijun Li ,&nbsp;Yiqun Song","doi":"10.1016/j.ijoes.2025.100928","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial pneumonia remains a significant global health challenge, necessitating rapid and accurate diagnostic methods for effective treatment. This review comprehensively examines the current status and future perspectives of electrophoretic techniques in bacterial pneumonia detection, highlighting their potential to address limitations of conventional diagnostic methods. Recent advances in electrophoretic platforms, including capillary electrophoresis, gel electrophoresis, and microchip-based systems, have demonstrated promising capabilities for rapid pathogen identification and characterization. These techniques offer unique advantages in terms of separation efficiency, multiplexing capability, and analytical speed. Integration with mass spectrometry, fluorescence detection, and immunological methods has further enhanced their diagnostic potential. Notable developments include automated systems capable of simultaneous detection of multiple pathogens, point-of-care devices for resource-limited settings, and sophisticated data analysis approaches incorporating machine learning algorithms. Current applications range from direct pathogen detection in clinical samples to antibiotic resistance profiling and strain typing. The review also addresses critical challenges, including sensitivity limitations, standardization requirements, and implementation costs. Emerging trends in miniaturization, microfluidic integration, and advanced materials development suggest promising directions for improving diagnostic capabilities. Recent studies have demonstrated successful applications in detecting common pneumonia-causing pathogens such as Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae, with reduced analysis times and enhanced accuracy compared to traditional methods. The integration of artificial intelligence and automated analysis systems has further improved result interpretation and diagnostic reliability. While technical and economic challenges persist, ongoing developments in electrophoretic techniques show potential for transforming bacterial pneumonia diagnosis, ultimately contributing to improved patient outcomes through more rapid and precise pathogen identification.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 2","pages":"Article 100928"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial pneumonia remains a significant global health challenge, necessitating rapid and accurate diagnostic methods for effective treatment. This review comprehensively examines the current status and future perspectives of electrophoretic techniques in bacterial pneumonia detection, highlighting their potential to address limitations of conventional diagnostic methods. Recent advances in electrophoretic platforms, including capillary electrophoresis, gel electrophoresis, and microchip-based systems, have demonstrated promising capabilities for rapid pathogen identification and characterization. These techniques offer unique advantages in terms of separation efficiency, multiplexing capability, and analytical speed. Integration with mass spectrometry, fluorescence detection, and immunological methods has further enhanced their diagnostic potential. Notable developments include automated systems capable of simultaneous detection of multiple pathogens, point-of-care devices for resource-limited settings, and sophisticated data analysis approaches incorporating machine learning algorithms. Current applications range from direct pathogen detection in clinical samples to antibiotic resistance profiling and strain typing. The review also addresses critical challenges, including sensitivity limitations, standardization requirements, and implementation costs. Emerging trends in miniaturization, microfluidic integration, and advanced materials development suggest promising directions for improving diagnostic capabilities. Recent studies have demonstrated successful applications in detecting common pneumonia-causing pathogens such as Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae, with reduced analysis times and enhanced accuracy compared to traditional methods. The integration of artificial intelligence and automated analysis systems has further improved result interpretation and diagnostic reliability. While technical and economic challenges persist, ongoing developments in electrophoretic techniques show potential for transforming bacterial pneumonia diagnosis, ultimately contributing to improved patient outcomes through more rapid and precise pathogen identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
期刊最新文献
Enhanced electrochemical performance of Ni2+ doped carbon coated LiMn0.5Fe0.5PO4 nanocomposites as cathode materials for lithium-ion batteries Assessment of quinazoline derivatives as efficient corrosion inhibitor for carbon steel in acidic environment. A theoretical and practical analysis Editorial Board Front Matter1:Full Title Page Bioelectrical oscillations and scaling behaviour of sea mud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1