Eco-driving optimal control for electric vehicles with driver preferences

Q1 Engineering Transportation Engineering Pub Date : 2025-01-16 DOI:10.1016/j.treng.2025.100302
Roberto Lot , James Fleming , Boli Chen , Simos Evangelou
{"title":"Eco-driving optimal control for electric vehicles with driver preferences","authors":"Roberto Lot ,&nbsp;James Fleming ,&nbsp;Boli Chen ,&nbsp;Simos Evangelou","doi":"10.1016/j.treng.2025.100302","DOIUrl":null,"url":null,"abstract":"<div><div>An optimal control formulation of an eco-driving system for front-wheel drive electric vehicles is proposed in this paper, demonstrating that including an optimal control model of driver preferences in such systems can successfully blend the objective of energy-efficiency with the subjective goals of human drivers, including desired following distances and time headways, a desired vehicle speed, smooth vehicle acceleration, and a comfortable corner negotiation speed. This builds on previous works that developed driver preference models for optimal control, but did not apply them to a realistic model of an EV powertrain to evaluate potential energy savings in practice. The resulting optimal control problem (OCP) is simplified for implementation by using a polynomial approximation of vehicle losses, and a relaxation of regenerative braking constraints that accurately accounts for required braking bias in a front-wheel drive vehicle. In testing, over a simulated 25km journey involving rural, motorway and urban sections, blending driver preferences with energy efficiency in this framework achieves energy savings of 21% with only a 7% decrease in average speed. For car-following scenarios, 10–15% energy savings are achievable with no decrease in average speed.</div></div>","PeriodicalId":34480,"journal":{"name":"Transportation Engineering","volume":"19 ","pages":"Article 100302"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666691X25000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

An optimal control formulation of an eco-driving system for front-wheel drive electric vehicles is proposed in this paper, demonstrating that including an optimal control model of driver preferences in such systems can successfully blend the objective of energy-efficiency with the subjective goals of human drivers, including desired following distances and time headways, a desired vehicle speed, smooth vehicle acceleration, and a comfortable corner negotiation speed. This builds on previous works that developed driver preference models for optimal control, but did not apply them to a realistic model of an EV powertrain to evaluate potential energy savings in practice. The resulting optimal control problem (OCP) is simplified for implementation by using a polynomial approximation of vehicle losses, and a relaxation of regenerative braking constraints that accurately accounts for required braking bias in a front-wheel drive vehicle. In testing, over a simulated 25km journey involving rural, motorway and urban sections, blending driver preferences with energy efficiency in this framework achieves energy savings of 21% with only a 7% decrease in average speed. For car-following scenarios, 10–15% energy savings are achievable with no decrease in average speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Engineering
Transportation Engineering Engineering-Automotive Engineering
CiteScore
8.10
自引率
0.00%
发文量
46
审稿时长
90 days
期刊最新文献
Effect of aging kinetics on the fatigue behavior of asphalt mixtures incorporating various RAP contents Analysis of electric vehicle charging behaviour in existing regional public and workplace charging infrastructure: A case study in the North-East UK Effect of clay materials on phase separation in plastic bag waste-modified bitumen during high-temperature storage Low-budget equipment facilitating skid coefficient extraction for traffic accident analysis Eco-driving optimal control for electric vehicles with driver preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1