{"title":"Softening the criteria for determining inner and outer predicted exceedance sets","authors":"Thomas Suesse , Alexander Brenning","doi":"10.1016/j.spasta.2024.100876","DOIUrl":null,"url":null,"abstract":"<div><div>Determining exceedance regions, such as regions where a specified threshold of a pollutant in the environment is exceeded, is of critical importance for decision-making in environmental management and public health. Inner and outer predicted exceedance sets express the uncertainties in predicted exceedance regions as they sandwich the unknown true exceedance region with high confidence, analogous to confidence regions for point estimates. It is therefore desirable to reduce the uncertainty about the locations of the true exceedance region, resulting in a narrow band between the inner and outer sets. However, in practice this is not often the case mainly due to the strict statistical subset criteria being set, which are equivalent to a multiple testing problem controlling the familywise error rate (FWER). It is well known that the FWER leads to fewer rejections compared to other criteria; in the context of exceedance regions, this would correspond to an extremely small, conservative inner predicted exceedance region. In this paper, we loosen the criteria slightly to obtain a narrower band between inner and outer sets, allowing for more nuanced uncertainty assessments. A new algorithm is proposed to construct these exceedance sets, and the methods are compared in a simulation study to assess whether they indeed control the new criteria. The methods are illustrated on two data sets: average rainfall in the state of Paraná, Brazil, and nitrogen dioxide air pollution in Germany in the year 2018.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"65 ","pages":"Article 100876"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining exceedance regions, such as regions where a specified threshold of a pollutant in the environment is exceeded, is of critical importance for decision-making in environmental management and public health. Inner and outer predicted exceedance sets express the uncertainties in predicted exceedance regions as they sandwich the unknown true exceedance region with high confidence, analogous to confidence regions for point estimates. It is therefore desirable to reduce the uncertainty about the locations of the true exceedance region, resulting in a narrow band between the inner and outer sets. However, in practice this is not often the case mainly due to the strict statistical subset criteria being set, which are equivalent to a multiple testing problem controlling the familywise error rate (FWER). It is well known that the FWER leads to fewer rejections compared to other criteria; in the context of exceedance regions, this would correspond to an extremely small, conservative inner predicted exceedance region. In this paper, we loosen the criteria slightly to obtain a narrower band between inner and outer sets, allowing for more nuanced uncertainty assessments. A new algorithm is proposed to construct these exceedance sets, and the methods are compared in a simulation study to assess whether they indeed control the new criteria. The methods are illustrated on two data sets: average rainfall in the state of Paraná, Brazil, and nitrogen dioxide air pollution in Germany in the year 2018.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.