Manjusha J. Gavhane , R.K. Jha , Kyung-Wan Nam , Deu S. Bhange
{"title":"Synthesis and structural studies of ammonium exchanged synthetic analogue of disordered aluminosilicate natrolite","authors":"Manjusha J. Gavhane , R.K. Jha , Kyung-Wan Nam , Deu S. Bhange","doi":"10.1016/j.micromeso.2024.113441","DOIUrl":null,"url":null,"abstract":"<div><div>The current article reports preparation and structural analysis of NH<sub>4</sub><sup>+</sup> exchanged form of synthetic natrolite zeolite (NH<sub>4</sub>-natrolite) with disordered structure wherein Si and Al occupies all the tetrahedral (T) sites in the zeolite framework. Structural data is used to gain insight into the structural parameters those influence thermal stability of its proposed H-form. NH<sub>4</sub>-natrolite is prepared by ion-exchange method from K-natrolite (which was also obtained by ion-exchange with Na-natrolite). Na-natrolite, K-natrolite and NH<sub>4</sub>-natrolite prepared in this study were tested for their structural, morphological and thermal analysis. Synchrotron X-ray diffraction data was utilized to estimate the crystal structures of hydrated forms of Na-natrolite, K-natrolite and NH<sub>4</sub>-exchanged natrolites. Thermal analysis of NH<sub>4</sub>-natrolite revealed that the dehydration is followed by removal of ammonia during calcination. The role of the size (radius) and nature (either divalent or monovalent) of the exchangeable cations present in the channels, the framework chemical content and extent of ‘T’ atom ordering have been collectively discussed and correlated with the structural behaviour of calcined NH<sub>4</sub>-natrolite to explain its thermal stability in better way.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113441"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004633","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The current article reports preparation and structural analysis of NH4+ exchanged form of synthetic natrolite zeolite (NH4-natrolite) with disordered structure wherein Si and Al occupies all the tetrahedral (T) sites in the zeolite framework. Structural data is used to gain insight into the structural parameters those influence thermal stability of its proposed H-form. NH4-natrolite is prepared by ion-exchange method from K-natrolite (which was also obtained by ion-exchange with Na-natrolite). Na-natrolite, K-natrolite and NH4-natrolite prepared in this study were tested for their structural, morphological and thermal analysis. Synchrotron X-ray diffraction data was utilized to estimate the crystal structures of hydrated forms of Na-natrolite, K-natrolite and NH4-exchanged natrolites. Thermal analysis of NH4-natrolite revealed that the dehydration is followed by removal of ammonia during calcination. The role of the size (radius) and nature (either divalent or monovalent) of the exchangeable cations present in the channels, the framework chemical content and extent of ‘T’ atom ordering have been collectively discussed and correlated with the structural behaviour of calcined NH4-natrolite to explain its thermal stability in better way.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.