Identification of biomarkers associated with macrophage polarization in diabetic cardiomyopathy based on bioinformatics and machine learning approaches

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2025-02-04 DOI:10.1016/j.lfs.2025.123443
Yi Liu , Juan Zhang , Quancheng Han , Yan Li , Yitao Xue , Xiujuan Liu
{"title":"Identification of biomarkers associated with macrophage polarization in diabetic cardiomyopathy based on bioinformatics and machine learning approaches","authors":"Yi Liu ,&nbsp;Juan Zhang ,&nbsp;Quancheng Han ,&nbsp;Yan Li ,&nbsp;Yitao Xue ,&nbsp;Xiujuan Liu","doi":"10.1016/j.lfs.2025.123443","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Numerous studies have investigated the role of macrophages in the pathogenesis of diabetic cardiomyopathy (DCM); however, the underlying mechanisms remain unclear.</div></div><div><h3>Methods</h3><div>The DCM dataset (GSE62203) was downloaded from the GEO database. DEGs and WGCNA key module genes were identified. Macrophage polarization-associated genes were obtained from the GeneCards database. GO and KEGG functional enrichment were constructed. Two machine learning techniques, LASSO logistic regression and random forest, were further used to identify hub genes. The diagnostic efficiency was evaluated using ROC curves. Single-gene GSEA investigated the biological functions. Then, the relationship between hub genes and macrophage pathways was explored. Predicted Transcription factor (TF), miRNA, and lncRNA. Single cell sequencing analysis was performed. Finally, experimental validation of the hub genes using the DCM rat model.</div></div><div><h3>Results</h3><div>Three hub genes (PGK1, LDHA, EDN1) were identified through machine learning approaches. All three hub genes were found to be associated with the HIF-1 signaling pathway. Functional enrichment analysis revealed that the HIF-1 signaling pathway and Glycolysis/Gluconeogenesis are potentially linked to DCM-induced macrophage polarization. The mRNA and protein expression levels of the hub genes were consistent with the bioinformatics analysis. Furthermore, mRNA expression of the hub genes showed a positive correlation with CD80 and CD86.</div></div><div><h3>Conclusion</h3><div>PGK1, LDHA, and EDN1 represent potential biomarkers for M1 macrophage polarization in DCM. These genes may facilitate M1 macrophage polarization in DCM. Targeting macrophage polarization could represent a novel therapeutic strategy for DCM.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"364 ","pages":"Article 123443"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525000761","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Numerous studies have investigated the role of macrophages in the pathogenesis of diabetic cardiomyopathy (DCM); however, the underlying mechanisms remain unclear.

Methods

The DCM dataset (GSE62203) was downloaded from the GEO database. DEGs and WGCNA key module genes were identified. Macrophage polarization-associated genes were obtained from the GeneCards database. GO and KEGG functional enrichment were constructed. Two machine learning techniques, LASSO logistic regression and random forest, were further used to identify hub genes. The diagnostic efficiency was evaluated using ROC curves. Single-gene GSEA investigated the biological functions. Then, the relationship between hub genes and macrophage pathways was explored. Predicted Transcription factor (TF), miRNA, and lncRNA. Single cell sequencing analysis was performed. Finally, experimental validation of the hub genes using the DCM rat model.

Results

Three hub genes (PGK1, LDHA, EDN1) were identified through machine learning approaches. All three hub genes were found to be associated with the HIF-1 signaling pathway. Functional enrichment analysis revealed that the HIF-1 signaling pathway and Glycolysis/Gluconeogenesis are potentially linked to DCM-induced macrophage polarization. The mRNA and protein expression levels of the hub genes were consistent with the bioinformatics analysis. Furthermore, mRNA expression of the hub genes showed a positive correlation with CD80 and CD86.

Conclusion

PGK1, LDHA, and EDN1 represent potential biomarkers for M1 macrophage polarization in DCM. These genes may facilitate M1 macrophage polarization in DCM. Targeting macrophage polarization could represent a novel therapeutic strategy for DCM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
BCA Protein Assay Kit
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
Regulation of autophagy: Insights into O-GlcNAc modification mechanisms The path winds along isolation and analyses of fetal nucleated red blood cells in maternal peripheral blood: Past, present, and future toward non-invasive prenatal diagnosis A critique review of fetal hemoglobin modulators through targeting epigenetic regulators for the treatment of sickle cell disease Female mice exposed to varying ratios of stearic to palmitic acid in a high-fat diet during gestation and lactation shows differential impairments of beta-cell function Involvement of disulfidptosis in the pathophysiology of autism spectrum disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1