Pulsed-wave laser additive manufacturing of CrCoNi medium-entropy alloys with high strength and ductility

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-12-01 DOI:10.1016/j.mattod.2024.10.004
Shubo Gao , Weiming Ji , Qi Zhu , Asker Jarlöv , Xiaojun Shen , Xueyu Bai , Chenyang Zhu , Yung Zhen Lek , Zhongmin Xiao , Kun Zhou
{"title":"Pulsed-wave laser additive manufacturing of CrCoNi medium-entropy alloys with high strength and ductility","authors":"Shubo Gao ,&nbsp;Weiming Ji ,&nbsp;Qi Zhu ,&nbsp;Asker Jarlöv ,&nbsp;Xiaojun Shen ,&nbsp;Xueyu Bai ,&nbsp;Chenyang Zhu ,&nbsp;Yung Zhen Lek ,&nbsp;Zhongmin Xiao ,&nbsp;Kun Zhou","doi":"10.1016/j.mattod.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most popular medium- and high-entropy alloys is CrCoNi alloy, renowned for its outstanding mechanical properties, particularly at cryogenic temperatures. However, further enhancing the yield strength of CrCoNi at room temperature while maintaining its high ductility remains challenging. In this study, we explore the potential of using a pulsed-wave laser in the powder bed fusion, a dominant metal additive manufacturing (AM) technique, to achieve exceptional room-temperature strength–ductility synergy in CrCoNi alloy. The pulsed-wave laser induces extra thermal cycles, generating additional pre-existing dislocations that are uniformly distributed within the interiors of solidification cells, a phenomenon distinct from conventional AM. These pre-existing dislocations not only enhance the room-temperature yield strength exceeding 800 MPa but also trigger the onset of deformation twinning prior to 2% strain. This early activation of deformation twinning contributes to steady work hardening throughout the entire plastic deformation, resulting in a large uniform elongation of nearly 40%. Our work offers valuable insights for designing novel AM processes with pulsed-wave lasers to advance the fabrication of high-value and high-performance alloys.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 36-46"},"PeriodicalIF":22.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most popular medium- and high-entropy alloys is CrCoNi alloy, renowned for its outstanding mechanical properties, particularly at cryogenic temperatures. However, further enhancing the yield strength of CrCoNi at room temperature while maintaining its high ductility remains challenging. In this study, we explore the potential of using a pulsed-wave laser in the powder bed fusion, a dominant metal additive manufacturing (AM) technique, to achieve exceptional room-temperature strength–ductility synergy in CrCoNi alloy. The pulsed-wave laser induces extra thermal cycles, generating additional pre-existing dislocations that are uniformly distributed within the interiors of solidification cells, a phenomenon distinct from conventional AM. These pre-existing dislocations not only enhance the room-temperature yield strength exceeding 800 MPa but also trigger the onset of deformation twinning prior to 2% strain. This early activation of deformation twinning contributes to steady work hardening throughout the entire plastic deformation, resulting in a large uniform elongation of nearly 40%. Our work offers valuable insights for designing novel AM processes with pulsed-wave lasers to advance the fabrication of high-value and high-performance alloys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高强度、高塑性CrCoNi中熵合金的脉冲波激光增材制造
CrCoNi合金是最受欢迎的中高熵合金之一,以其出色的机械性能而闻名,特别是在低温下。然而,进一步提高CrCoNi在室温下的屈服强度,同时保持其高延展性仍然是一个挑战。在这项研究中,我们探索了在粉末床熔合中使用脉冲波激光的潜力,这是一种主要的金属增材制造(AM)技术,可以在CrCoNi合金中实现卓越的室温强度-塑性协同作用。脉冲波激光诱导额外的热循环,产生额外的预先存在的位错,这些位错均匀分布在固化单元内部,这是一种与传统AM不同的现象。这些预先存在的位错不仅提高了室温屈服强度超过800 MPa,而且在2%应变之前引发变形孪晶的发生。这种变形孪晶的早期激活有助于在整个塑性变形过程中实现稳定的加工硬化,从而获得接近40%的均匀延伸率。我们的工作为设计新颖的脉冲波激光增材制造工艺提供了有价值的见解,以推进高价值和高性能合金的制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Experimental and computational advancement of cathode materials for futuristic sodium ion batteries Aminophosphonate-Derived lipid nanoparticles enable circular RNA delivery for functional recovery after spinal cord injury Microhole array metasurface-enhanced InAs/GaSb superlattice LWIR detectors with boosted photoresponse via guided-mode resonance coupling Concrete: From infrastructure to structural energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1