Impact of various flood conditions on the CO2 ecosystem exchange as a component of floodplain grassland restoration

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Ecological Engineering Pub Date : 2025-02-01 DOI:10.1016/j.ecoleng.2024.107489
A. Lindenberger , H.P. Rauch , K. Kasak , M. Stelzhammer , M. von der Thannen
{"title":"Impact of various flood conditions on the CO2 ecosystem exchange as a component of floodplain grassland restoration","authors":"A. Lindenberger ,&nbsp;H.P. Rauch ,&nbsp;K. Kasak ,&nbsp;M. Stelzhammer ,&nbsp;M. von der Thannen","doi":"10.1016/j.ecoleng.2024.107489","DOIUrl":null,"url":null,"abstract":"<div><div>Beyond flood protection to prevent severe damage, the restored floodplain grassland in Austria provides ecosystem services in terms of carbon balance. Net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (R<sub>eco</sub>) were quantified by the eddy covariance (EC) method before, during and after a severe flooding event. Our results show that the carbon balance is heavily influenced by water level in the study site. The diurnal variations influenced by various degree from the flood are analysed, showing the average daily GPP of the floodplain grassland in Marchegg dropping from 1.048 g C m<sup>−2</sup> day<sup>−1</sup> before the flood, down to 0.470 g C m<sup>−2</sup> day<sup>−1</sup> during the flood. The study demonstrates that the restored floodplain grassland in Marchegg functions as a robust CO2 sink with a cumulative NEE of 38.8 g carbon per m2 over the three-month study period, despite temporary disruptions caused by flooding events. The findings emphasise the considerable potential of floodplain grassland restoration for carbon storage and climate change mitigation, with the new data from the EC station offering valuable insights for future restoration projects. Finally, this supports the adoption of the new EU Nature Restoration Law and the need for restoring wetlands, floodplains and rivers to secure water availability and biodiversity in these unique ecosystems. NBS and more specifically as Soil and Water Bioengineering (SWBE) are methods with ecological advantages and a huge potential for sustainable recreation of near-natural ecosystems. It is of crucial importance to prove these beneficial effects, and to quantify them transparently in terms of quality assurance and use of resources in a sustainable and eco-friendly way.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"212 ","pages":"Article 107489"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424003148","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beyond flood protection to prevent severe damage, the restored floodplain grassland in Austria provides ecosystem services in terms of carbon balance. Net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (Reco) were quantified by the eddy covariance (EC) method before, during and after a severe flooding event. Our results show that the carbon balance is heavily influenced by water level in the study site. The diurnal variations influenced by various degree from the flood are analysed, showing the average daily GPP of the floodplain grassland in Marchegg dropping from 1.048 g C m−2 day−1 before the flood, down to 0.470 g C m−2 day−1 during the flood. The study demonstrates that the restored floodplain grassland in Marchegg functions as a robust CO2 sink with a cumulative NEE of 38.8 g carbon per m2 over the three-month study period, despite temporary disruptions caused by flooding events. The findings emphasise the considerable potential of floodplain grassland restoration for carbon storage and climate change mitigation, with the new data from the EC station offering valuable insights for future restoration projects. Finally, this supports the adoption of the new EU Nature Restoration Law and the need for restoring wetlands, floodplains and rivers to secure water availability and biodiversity in these unique ecosystems. NBS and more specifically as Soil and Water Bioengineering (SWBE) are methods with ecological advantages and a huge potential for sustainable recreation of near-natural ecosystems. It is of crucial importance to prove these beneficial effects, and to quantify them transparently in terms of quality assurance and use of resources in a sustainable and eco-friendly way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
期刊最新文献
Soil-bioengineering to stabilize gravel roadside slopes in the steep Hyrcanian Forests of Northern Iran On the influence of plant morphology in the extensive green roof cover: A case study in Mediterranean area Assessment of wetland sustainability capacity of artificial mangrove wetland on landscape scale: A case of Luoyangjiang River Estuary, China A review on constructed wetlands in Beijing-Tianjin-Hebei region of China: Application in water treatment, problem, and practical solution Assessment of oxygen demand loads and its application in effective decision-making for the rehabilitation of an urban lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1