Yonghong Zhang , Suping Cui , Xinxin Wang , Bohao Yang , Na Zhang , Tao Liu
{"title":"Microstructure and performance of recycled wind turbine blade based 3D printed concrete","authors":"Yonghong Zhang , Suping Cui , Xinxin Wang , Bohao Yang , Na Zhang , Tao Liu","doi":"10.1016/j.clwas.2025.100206","DOIUrl":null,"url":null,"abstract":"<div><div>End-of-Life (EoL) wind turbine blades (WTBs), which pose an environmental problem because of their short service life and lack of proven recycling options, are expected to expand significantly as the wind power industry grows rapidly. Potting's \"R strategy\" and this study's combined investigation of the recycling and integrated use of solid debris from recycled wind turbine blades (RWTBs) in 3D printed concrete offer a creative and cost-effective way to address this pressing problem. The present priority for handling the waste from wind turbine blades are closely aligned with this approach. The study aims to investigate the feasibility of incorporating RWTB components into 3D printed concrete by utilizing the advantages of this innovative construction technique, which include rapid building, labor and material savings, and the capacity to make intricate structures. Since RWTBs have about double the SiO<sub>2</sub> concentration of cement, it has been discovered that adding a suitable amount of SiO<sub>2</sub> improves cement hydration and the mechanical qualities of 3D printed concrete. In this study, recycled glass fibers (chopped rGF) and GFRP powder were utilized as cementitious materials, aggregates, and fiber-reinforced components. The results show that GFRP powder, which is produced by mechanical recycling, can be mixed with up to 25 % of the mass of cementitious material without affecting its mechanical strength, printability, extrudability, or buildability. In a similar vein, chopped rGF, which is mechanically recycled, can be utilized as aggregate and reinforcing material up to 20 % of the total volume. Significant integration of RWTB solid waste is demonstrated by the co-doping of chopped rGF and GFRP powder, which can account for up to 20 % of the total mass. By offering a sustainable method for recycling RWTB components in building applications, this research helps to promote the circular economy by reducing the environmental impact of disposing of wind turbine blades.</div></div>","PeriodicalId":100256,"journal":{"name":"Cleaner Waste Systems","volume":"10 ","pages":"Article 100206"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Waste Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772912525000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
End-of-Life (EoL) wind turbine blades (WTBs), which pose an environmental problem because of their short service life and lack of proven recycling options, are expected to expand significantly as the wind power industry grows rapidly. Potting's "R strategy" and this study's combined investigation of the recycling and integrated use of solid debris from recycled wind turbine blades (RWTBs) in 3D printed concrete offer a creative and cost-effective way to address this pressing problem. The present priority for handling the waste from wind turbine blades are closely aligned with this approach. The study aims to investigate the feasibility of incorporating RWTB components into 3D printed concrete by utilizing the advantages of this innovative construction technique, which include rapid building, labor and material savings, and the capacity to make intricate structures. Since RWTBs have about double the SiO2 concentration of cement, it has been discovered that adding a suitable amount of SiO2 improves cement hydration and the mechanical qualities of 3D printed concrete. In this study, recycled glass fibers (chopped rGF) and GFRP powder were utilized as cementitious materials, aggregates, and fiber-reinforced components. The results show that GFRP powder, which is produced by mechanical recycling, can be mixed with up to 25 % of the mass of cementitious material without affecting its mechanical strength, printability, extrudability, or buildability. In a similar vein, chopped rGF, which is mechanically recycled, can be utilized as aggregate and reinforcing material up to 20 % of the total volume. Significant integration of RWTB solid waste is demonstrated by the co-doping of chopped rGF and GFRP powder, which can account for up to 20 % of the total mass. By offering a sustainable method for recycling RWTB components in building applications, this research helps to promote the circular economy by reducing the environmental impact of disposing of wind turbine blades.