Niche differentiation of denitrifying anaerobic methane oxidation bacteria and archaea in the permafrost peatlands

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2025-02-01 DOI:10.1016/j.ibiod.2024.105990
Lingyu Fu , Xiangwen Wu , Dalong Ma , Weiping Yin , Anwen Liu , Xu Wang
{"title":"Niche differentiation of denitrifying anaerobic methane oxidation bacteria and archaea in the permafrost peatlands","authors":"Lingyu Fu ,&nbsp;Xiangwen Wu ,&nbsp;Dalong Ma ,&nbsp;Weiping Yin ,&nbsp;Anwen Liu ,&nbsp;Xu Wang","doi":"10.1016/j.ibiod.2024.105990","DOIUrl":null,"url":null,"abstract":"<div><div>The anaerobic oxidation of methane (AOM) coupled to either nitrite or nitrate reduction (nitrite or nitrate-DAMO) is a process connecting global nitrogen and carbon cycles. Permafrost peatlands are important natural sources of methane, and climate warming is accelerating permafrost thaw, resulting in changes in water table and vegetation communities that are dramatically reshaping microbial-mediated methane oxidation processes, potentially creating strong positive peatland-climate feedbacks, while the ecology of DAMO bacteria and archaea in peatland soils is poorly understood. Herein, the diversity, abundance, phylogeny, and potential activity of DAMO bacteria and archaea were explored using molecular techniques and stable isotope tracing in three typical peatlands of the Greater Khingan Mountains permafrost regions. The results revealed the co-existence of DAMO bacteria and archaea, with notable variations in community structures across different peatlands, while the vertical distribution within soil profiles remained relatively stable. These variations were mainly affected by factors such as water content, total organic carbon, nitrite, and nitrate in soil. The potential activity and abundance suggested that DAMO bacteria were predominantly found in the middle soil layers, whereas DAMO archaea were more abundant in the bottom layers. Furthermore, the diversity, potential activity, and abundance of DAMO bacteria generally declined along the forest-peatland ecotone, whereas DAMO archaea exhibited an increasing trend. Partial least squares path modeling (PLS-PM) and correlation analyses revealed strong associations between DAMO activities and the abundances of the <em>pmoA</em> and <em>mcrA</em> genes, in addition to substrate availability. The relative contribution of nitrite-DAMO to the total CH<sub>4</sub> oxidation was 16.77%, slightly higher than that of nitrate-DAMO at 13.23%, with both contributing more significantly than AOM coupled to iron oxide reduction (Fe-AOM) at 8.65%, demonstrating that AOM are important processes for mitigating CH<sub>4</sub> emissions in peatlands. This research contributes to a better understanding of the biogeochemical cycling of CH<sub>4</sub> in permafrost peatlands and broaden our insight into the environmental significance of DAMO microorganisms.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"198 ","pages":"Article 105990"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002610","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The anaerobic oxidation of methane (AOM) coupled to either nitrite or nitrate reduction (nitrite or nitrate-DAMO) is a process connecting global nitrogen and carbon cycles. Permafrost peatlands are important natural sources of methane, and climate warming is accelerating permafrost thaw, resulting in changes in water table and vegetation communities that are dramatically reshaping microbial-mediated methane oxidation processes, potentially creating strong positive peatland-climate feedbacks, while the ecology of DAMO bacteria and archaea in peatland soils is poorly understood. Herein, the diversity, abundance, phylogeny, and potential activity of DAMO bacteria and archaea were explored using molecular techniques and stable isotope tracing in three typical peatlands of the Greater Khingan Mountains permafrost regions. The results revealed the co-existence of DAMO bacteria and archaea, with notable variations in community structures across different peatlands, while the vertical distribution within soil profiles remained relatively stable. These variations were mainly affected by factors such as water content, total organic carbon, nitrite, and nitrate in soil. The potential activity and abundance suggested that DAMO bacteria were predominantly found in the middle soil layers, whereas DAMO archaea were more abundant in the bottom layers. Furthermore, the diversity, potential activity, and abundance of DAMO bacteria generally declined along the forest-peatland ecotone, whereas DAMO archaea exhibited an increasing trend. Partial least squares path modeling (PLS-PM) and correlation analyses revealed strong associations between DAMO activities and the abundances of the pmoA and mcrA genes, in addition to substrate availability. The relative contribution of nitrite-DAMO to the total CH4 oxidation was 16.77%, slightly higher than that of nitrate-DAMO at 13.23%, with both contributing more significantly than AOM coupled to iron oxide reduction (Fe-AOM) at 8.65%, demonstrating that AOM are important processes for mitigating CH4 emissions in peatlands. This research contributes to a better understanding of the biogeochemical cycling of CH4 in permafrost peatlands and broaden our insight into the environmental significance of DAMO microorganisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Genomics and biodegradation properties of an oleophilic bacterium isolated from shale oil sludge Regulation of microbial activity based on quorum sensing: Implications for biological wastewater treatment Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1 Baseline characteristics of the microbial community structure and composition of the world cultural heritage sites in Macau Assessment of MALDI-TOF MS for the identification of cultural heritage insect pests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1