Sulfadiazine degradation by Acinetobacter sp. strain H-3 and its applicability in soil at low temperatures

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2025-02-01 DOI:10.1016/j.ibiod.2025.105998
Shuang Zhao , Yi Zhang , Rongjiu Shi , Xiaolong Liang , Ping Li , Xue Bai , Siqin Han , Ying Zhang
{"title":"Sulfadiazine degradation by Acinetobacter sp. strain H-3 and its applicability in soil at low temperatures","authors":"Shuang Zhao ,&nbsp;Yi Zhang ,&nbsp;Rongjiu Shi ,&nbsp;Xiaolong Liang ,&nbsp;Ping Li ,&nbsp;Xue Bai ,&nbsp;Siqin Han ,&nbsp;Ying Zhang","doi":"10.1016/j.ibiod.2025.105998","DOIUrl":null,"url":null,"abstract":"<div><div>The prolonged and widespread use of veterinary antibiotics resulted in a significant accumulation of antibiotic residues in the soil surrounding poultry farms, thereby promoting the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In the northern regions of China, low temperatures hinder the microbial degradation of antibiotics. This study reports that <em>Acinetobacter</em> sp. H-3, isolated from a poultry farm in Liaoning Province, Northeast China, is capable of effectively degrading SDZ at a minimum temperature of 5°C, with optimal degradation efficiency observed at 15°C. The strain H-3 removed 82% of SDZ from the soil over a 14-day period at 15°C, with 53% of this degradation directly attributed to the activity of strain H-3. High-throughput sequencing and RT-qPCR analyses revealed that exposure to SDZ significantly altered the soil bacterial community structure, inhibited soil microbial functions and increased the abundance of <em>sul1</em>, <em>sul2</em> and <em>intI1</em> genes. Following the application of, certain bacterial genera in the contaminated soil exhibited indications of recovery. However, the overall soil microbial function did not show a recovery trend. Additionally, the presence of strain H-3, which carries the <em>sul1</em>, <em>sul2</em> and <em>intI1</em> genes, resulted in an increase in <em>sul1</em>, followed by a subsequent decrease, while the levels of <em>sul2</em> and <em>intI1</em> continued to rise. This study is the first to report that <em>Acinetobacter</em> sp. strain H-3 can effectively remove SDZ at low temperatures. Furthermore, it provides a preliminary evaluation of the ecological risks linked to the dissemination of ARGs during the application of this strain, contributing valuable resources and theoretical insights for the bioremediation of antibiotic-polluted soil in cold areas.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"198 ","pages":"Article 105998"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000022","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prolonged and widespread use of veterinary antibiotics resulted in a significant accumulation of antibiotic residues in the soil surrounding poultry farms, thereby promoting the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In the northern regions of China, low temperatures hinder the microbial degradation of antibiotics. This study reports that Acinetobacter sp. H-3, isolated from a poultry farm in Liaoning Province, Northeast China, is capable of effectively degrading SDZ at a minimum temperature of 5°C, with optimal degradation efficiency observed at 15°C. The strain H-3 removed 82% of SDZ from the soil over a 14-day period at 15°C, with 53% of this degradation directly attributed to the activity of strain H-3. High-throughput sequencing and RT-qPCR analyses revealed that exposure to SDZ significantly altered the soil bacterial community structure, inhibited soil microbial functions and increased the abundance of sul1, sul2 and intI1 genes. Following the application of, certain bacterial genera in the contaminated soil exhibited indications of recovery. However, the overall soil microbial function did not show a recovery trend. Additionally, the presence of strain H-3, which carries the sul1, sul2 and intI1 genes, resulted in an increase in sul1, followed by a subsequent decrease, while the levels of sul2 and intI1 continued to rise. This study is the first to report that Acinetobacter sp. strain H-3 can effectively remove SDZ at low temperatures. Furthermore, it provides a preliminary evaluation of the ecological risks linked to the dissemination of ARGs during the application of this strain, contributing valuable resources and theoretical insights for the bioremediation of antibiotic-polluted soil in cold areas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Genomics and biodegradation properties of an oleophilic bacterium isolated from shale oil sludge Regulation of microbial activity based on quorum sensing: Implications for biological wastewater treatment Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1 Baseline characteristics of the microbial community structure and composition of the world cultural heritage sites in Macau Assessment of MALDI-TOF MS for the identification of cultural heritage insect pests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1