P. Saranya , K. Sundaramahalingam , D. Vanitha , M. Nandhinilakshmi , V. N. Vijayakumar
{"title":"Tamarind gum based magnesium ion conducting polymer membrane for energy storage applications","authors":"P. Saranya , K. Sundaramahalingam , D. Vanitha , M. Nandhinilakshmi , V. N. Vijayakumar","doi":"10.1080/1023666X.2024.2416212","DOIUrl":null,"url":null,"abstract":"<div><div>A solid bio polymer electrolyte (SPE) based on tamarind gum (TG) and magnesium nitrate was synthesized by a solution casting technique. The amorphous behavior is observed by X-ray diffraction (XRD) analysis, and the degree of crystallinity is calculated from the XRD deconvolution spectra. The interaction between the polymer and the salt was confirmed by Fourier transform infrared (FTIR) analysis. Using FTIR deconvolution spectra, the percentage of free ions can be calculated. The glass transition temperature (T<sub>g</sub>) was determined via differential scanning calorimetry (DSC). A higher ionic conductivity (σ) of 1.97 × 10<sup>−4</sup> S/cm is observed for the sample with 1 g of tamarind gum and 0.5 g of magnesium nitrate (4 TMN). The conduction mechanism shows that sample 4 TMN obeys the quantum mechanical tunneling model (QMT) at low frequency. The prepared SPEs follow the Arrhenius behavior, and the minimum activation energy (E<sub>a</sub>) of 0.207 eV is observed for sample 4 TMN. The lowest relaxation time (τ) was 3.46 × 10<sup>−7</sup> s for 4-TMN according to the tangent spectra. The transference number of ions (t<sub>ion</sub>) is calculated by Wagner’s polarization method. The electrochemical stability window observed by linear sweep voltammetry (LSV) is 2.25 V. The primary battery is fabricated by using sample 4TMN, and an open circuit voltage (OCV) of 2.01 V is observed.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 1","pages":"Pages 1-25"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000507","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A solid bio polymer electrolyte (SPE) based on tamarind gum (TG) and magnesium nitrate was synthesized by a solution casting technique. The amorphous behavior is observed by X-ray diffraction (XRD) analysis, and the degree of crystallinity is calculated from the XRD deconvolution spectra. The interaction between the polymer and the salt was confirmed by Fourier transform infrared (FTIR) analysis. Using FTIR deconvolution spectra, the percentage of free ions can be calculated. The glass transition temperature (Tg) was determined via differential scanning calorimetry (DSC). A higher ionic conductivity (σ) of 1.97 × 10−4 S/cm is observed for the sample with 1 g of tamarind gum and 0.5 g of magnesium nitrate (4 TMN). The conduction mechanism shows that sample 4 TMN obeys the quantum mechanical tunneling model (QMT) at low frequency. The prepared SPEs follow the Arrhenius behavior, and the minimum activation energy (Ea) of 0.207 eV is observed for sample 4 TMN. The lowest relaxation time (τ) was 3.46 × 10−7 s for 4-TMN according to the tangent spectra. The transference number of ions (tion) is calculated by Wagner’s polarization method. The electrochemical stability window observed by linear sweep voltammetry (LSV) is 2.25 V. The primary battery is fabricated by using sample 4TMN, and an open circuit voltage (OCV) of 2.01 V is observed.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.